195 research outputs found

    Quantum Monte Carlo calculation of the zero-temperature phase diagram of the two-component fermionic hard-core gas in two dimensions

    Get PDF
    Motivated by potential realizations in cold-atom or cold-molecule systems, we have performed quantum Monte Carlo simulations of two-component gases of fermions in two dimensions with hard-core interactions. We have determined the gross features of the zero-temperature phase diagram by investigating the relative stabilities of paramagnetic and ferromagnetic fluids and crystals. We have also examined the effect of including a pairwise, long-range r^3 potential between the particles. Our most important conclusion is that there is no region of stability for a ferromagnetic fluid phase, even if the long-range interaction is present. We also present results for the pair-correlation function, static structure factor, and momentum density of two-dimensional hard-core fluids

    Spin-triplet superconductivity due to antiferromagnetic spin-fluctuation in Sr_2RuO_4

    Full text link
    A mechanism leading to the spin-triplet superconductivity is proposed based on the antiferromagnetic spin fluctuation. The effects of anisotropy in spin fluctuation on the Cooper pairing and on the direction of d vector are examined in the one-band Hubbard model with RPA approximation. The gap equations for the anisotropic case are derived and applied to Sr_2RuO_4. It is found that a nesting property of the Fermi surface together with the anisotropy leads to the triplet superconductivity with the d=z(sin{k_x}\pm isin{k_y}), which is consistent with experiments.Comment: 4 pages, 3 eps figures, revte

    Gravitational Instabilities, Chondrule Formation, and the FU Orionis Phenomenon

    Full text link
    Using analytic arguments and numerical simulations, we examine whether chondrule formation and the FU Orionis phenomenon can be caused by the burst-like onset of gravitational instabilities (GIs) in dead zones. At least two scenarios for bursting dead zones can work, in principle. If the disk is on the verge of fragmention, GI activation near r4r\sim4 to 5 AU can produce chondrule-forming shocks, at least under extreme conditions. Mass fluxes are also high enough during the onset of GIs to suggest that the outburst is related to an FU Orionis phenomenon. This situation is demonstrated by numerical simulations. In contrast, as supported by analytic arguments, if the burst takes place close to r1r\sim1 AU, then even low pitch angle spiral waves can create chondrule-producing shocks and outbursts. We also study the stability of the massive disks in our simulations against fragmentation and find that although disk evolution is sensitive to changes in opacity, the disks we study do not fragment, even at high resolution and even for extreme assumptions.Comment: To appear in Ap

    Vortex lattice structures and pairing symmetry in Sr2RuO4

    Full text link
    Recent experimental results indicate that superconductivity in Sr2RuO4 is described by the p-wave E_u representation of the D_{4h} point group. Results on the vortex lattice structures for this representation are presented. The theoretical results are compared with experiment.Comment: 4 pages, 3 figures, M2S-HTSC-VI proceeding

    A method to generate computationally efficient reduced order models

    Get PDF
    A new method is presented to generate reduced order models (ROMs) in Fluid Dynamics problems. The method is based on the expansion of the flow variables on a Proper Orthogonal Decomposition (POD) basis, calculated from a limited number of snapshots, which are obtained via Computational Fluid Dynamics (CFD). Then, the POD-mode amplitudes are calculated as minimizers of a properly defined overall residual of the equations and boundary conditions. The residual can be calculated using only a limited number of points in the flow field, which can be scattered either all over the whole computational domain or over a smaller projection window. This means that the process is both computationally efficient (reconstructed flow fields require less than 1% of the time needed to compute a full CFD solution) and flexible (the projection window can avoid regions of large localized CFD errors). Also, various definitions of the residual are briefly discussed, along with the number and distribution of snapshots, the number of retained modes, and the effect of CFD errors, to conclude that the method is numerically robust. This is because the results are largely insensitive to the definition of the residual, to CFD errors, and to the CFD method itself, which may contain artificial stabilizing terms. Thus, the method is amenable for practical engineering applications

    Spin-triplet superconducting pairing due to local (Hund's rule, Dirac) exchange

    Full text link
    We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hund's rule coupling. The quasiparticle energy and their wave function are determined for the three principal phases with the gap, which is momentum independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the case of triplet pairing in the two-band case leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle interchange. A comparison with the local interband spin-singlet pairing is also made.Comment: 16 pages, LaTex, submitted to Phys. Rev.

    A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity

    Get PDF
    This work contributes to the UK-China Virtual Joint Centre N-Circle (grant number BB/N013484/1), SuperG (funded under EU Horizon 2020 programme) and ADVENT (grant number NE/M019691/1). DRC was supported by the UK-China Virtual joint Centre for Agricultural Nitrogen (CINAg, BB/N013468/1) and the UK-Brazil Virtual Joint Centre to deliver enhanced N-use efficiency via an integrated soil-plant systems approach (NUCLEUS), which are jointly supported by Newton fund via UK BBSRC and NERC. Jaak Truu received financing from Estonian Research Council (grant PRG548).Peer reviewedPublisher PD

    A child presenting with acute renal failure secondary to a high dose of indomethacin: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute renal failure caused by nonsteroidal anti-inflammatory drugs administered at therapeutic doses is generally mild, non-anuric and transitory. There are no publications on indomethacin toxicity secondary to high doses in children. The aim of this article is to describe acute renal failure secondary to a high dose of indomethacin in a child and to review an error in a supervised drug prescription and administration system.</p> <p>Case presentation</p> <p>Due to a medication error, a 20-day-old infant in the postoperative period of surgery for Fallot's tetralogy received a dose of 10 mg/kg of indomethacin, 50 to 100 times higher than the therapeutic dose. The child presented with acute, oligo-anuric renal failure requiring treatment with continuous venovenous renal replacement therapy, achieving complete recovery of renal function with no sequelae.</p> <p>Conclusion</p> <p>In order to reduce medication errors in critically ill children, it is necessary to develop a supervised drug prescription and administration system, with controls at various levels.</p

    Estrogen and Progestogen Correlates of the Structure of Female Copulation Calls in Semi-Free-Ranging Barbary Macaques (Macaca sylvanus)

    Get PDF
    Females of many Old World primates produce conspicuous vocalizations in combination with copulations. Indirect evidence exists that in Barbary macaques (Macaca sylvanus), the structure of these copulation calls is related to changes in reproductive hormone levels. However, the structure of these calls does not vary significantly around the timing of ovulation when estrogen and progestogen levels show marked changes. We here aimed to clarify this paradox by investigating how the steroid hormones estrogen and progesterone are related to changes in the acoustic structure of copulation calls. We collected data on semi-free-ranging Barbary macaques in Gibraltar and at La Forêt des Singes in Rocamadour, France. We determined estrogen and progestogen concentrations from fecal samples and combined them with a fine-grained structural analysis of female copulation calls (N = 775 calls of 11 females). Our analysis indicates a time lag of 3 d between changes in fecal hormone levels, adjusted for the excretion lag time, and in the acoustic structure of copulation calls. Specifically, we found that estrogen increased the duration and frequency of the calls, whereas progestogen had an antagonistic effect. Importantly, however, variation in acoustic variables did not track short-term changes such as the peak in estrogen occurring around the timing of ovulation. Taken together, our results help to explain why female Barbary macaque copulation calls are related to changes in hormone levels but fail to indicate the fertile phase

    ASTEC -- the Aarhus STellar Evolution Code

    Full text link
    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.Comment: Astrophys. Space Sci, in the pres
    corecore