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Motivated by potential realizations in cold-atom or cold-molecule systems, we have performed quantum Monte
Carlo simulations of two-component gases of fermions in two dimensions with hard-core interactions. We have
determined the gross features of the zero-temperature phase diagram by investigating the relative stabilities of
paramagnetic and ferromagnetic fluids and crystals. We have also examined the effect of including a pairwise,
long-range r−3 potential between the particles. Our most important conclusion is that there is no region of
stability for a ferromagnetic fluid phase, even if the long-range interaction is present. We also present results for
the pair-correlation function, static structure factor, and momentum density of two-dimensional hard-core fluids.
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I. INTRODUCTION

Ultracold gases of fermionic atoms and molecules have
been the subject of a large number of experimental and
theoretical studies1,2 in the last decade. The interest in these
systems arises from the fact that the atoms or molecules
obey quantum statistics rather than classical statistics and
exhibit interesting and novel quantum phases at sufficiently
low temperatures. Unlike electron systems, it is possible to
manipulate the interaction between the atoms or molecules to
some extent, e.g., by Feshbach resonances3 and/or by applying
microwave fields.4–7 The ability to control the interactions can
be used to gain insight into the physics of phase transitions
and the nature of correlation effects in these quantum phases.
Celebrated examples are the experimental studies of the
Mott transition for bosons8 and of the superfluid pairing in
the unitary (strong-coupling) Fermi gas.1,2 Finally, ultracold
atomic gases may play an important role in future quantum
computing devices.

Recently, interest has turned toward the use of ultracold
atomic systems to investigate ferromagnetism in Fermi gases.
Itinerant ferromagnetism in electron systems is poorly un-
derstood, and it is possible that insights might be gained by
studying ferromagnetic fluid states in cold-atom systems.9

Experimental studies of strongly repulsive Fermi gases close
to Feshbach resonances have found behavior consistent with
the formation of (local) ferromagnetic correlations in the
manner of Stoner ferromagnetism.10 However, these systems
are limited by an intrinsic instability to molecule formation,
which results in a short lifetime for the ferromagnetic state
and may also complicate the interpretation of experimental
features.11,12 It is therefore of interest to explore other forms
of interaction that might give rise to ferromagnetism in the
absence of nearby bound states.

An interesting class of experimental system in this regard
is provided by gases of fermionic polar molecules (e.g.,
40K87Rb or 7Li40K). Polar molecules that are confined to
two-dimensional (2D) layers and dressed by a circularly
polarized microwave field experience a long-range potential
that falls off as r−3, where r is the intermolecular distance.5–7

Furthermore, the dressed states have the feature that there is a
very sharp increase in the potential energy at short distances,
preventing close approach. Hence, such molecules can be
modeled as a gas of fermionic hard-core particles with an
additional long-range potential varying as r−3. The hard-core
potential prevents the formation of shallow bound states even
for (weakly) attractive long-range interactions. It has been
suggested that a single-component gas of such fermionic
molecules will exhibit a topological superfluid p-wave pairing
phase of direct relevance to possible topologically protected
quantum computing devices.7,13

The 2D regime is reached by confining the motion of the
molecules in one direction to zero-point oscillations. This
requires the confinement frequency to be much larger than
the Fermi energy. Generally, the confinement length ranges
from 200–300 Å (for very tight confinement) to about 1 μm.
The finite width leads to the appearance of a sort of effective
core radius for hard-core interacting particles. This provides a
natural estimate of the Fermi wavelength λF � 200–300 Å,
for which a tightly confined system may be treated as
strictly 2D.

Here, we consider the case of a two-component gas of
fermionic molecules moving in 2D. We have applied quantum
Monte Carlo (QMC) methods to address the issue of whether
or not the hard-core interactions cause this system to exhibit
a region of itinerant ferromagnetism. In particular, we have
used the variational and diffusion quantum Monte Carlo (VMC
and DMC) techniques14,15 to establish the ground-state phase
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FIG. 1. (Color online) Two-body Jastrow factors exp[u(r)] for
N = 50 paramagnetic hard-core particles with D = 0.5 a.u.

diagram of two-component gases of fermionic hard-core par-
ticles moving in 2D. QMC methods are widely acknowledged
to be the most accurate first-principles techniques available for
studying condensed matter. In the VMC method, Monte Carlo
integration is used to evaluate expectation values with respect
to an explicitly correlated many-body trial wave function. In
the DMC method, the ground-state component of a trial wave
function is projected out by a stochastic algorithm. Fermionic
symmetry is maintained by the fixed-node approximation.16

Some of the earliest applications of QMC methods were to
study the ground-state properties of bosonic hard-sphere fluids
as a model for the behavior of 4He.17–19 More recently, QMC
methods have been used to study 3D fermionic systems in
which there is a hard-sphere repulsion between opposite-spin
particles.20,21 To the best of our knowledge, however, QMC
methods have never previously been used to study the phase
diagram of 2D gases of fermionic hard-core particles

This paper is arranged as follows. In Sec. II, we describe the
model Hamiltonian that we study. In Sec. III, we discuss the
form of trial wave function that we use. In Sec. IV, we consider
the issue of finite-size errors and explain how we extrapolate
to the thermodynamic limit. In Sec. V, we present our results
for the phase diagram of fermionic hard-core particles, and in
Sec. VI, we present results for the pair-correlation function
(PCF), static structure factor, and momentum density of hard-
core fluids. In Sec. VII, we investigate whether the inclusion
of weak, long-range interactions affects the phase diagram.
Finally, we draw our conclusions in Sec. VIII. All our QMC
calculations were performed using the CASINO code.22

II. HARD-CORE MODEL

A. Hard-core Hamiltonian

Suppose we have a system of interacting, circular hard-core
particles moving in two dimensions. Throughout, we use units
(a.u.) in which the Dirac constant, the mass of the particles, and
the radius of the circle that contains one particle on average
are unity. We assume the particles to be fermions with spin
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FIG. 2. (Color online) DMC energy E against the reciprocal
of the square of the system size N−2 for (a) D = 0.5 a.u.,
(b) D = 0.63 a.u., (c) D = 0.75 a.u., (d) D = 0.88 a.u., and (e) D =
1 a.u. The largest system size considered for ferromagnetic crystals
is N = 49 in each case, apart from D = 1, where the largest size
considered is N = 100. The largest system size considered for
the antiferromagnetic crystal is N = 36. The largest system size
considered for the paramagnetic fluid (square cell) is N = 50, 58,
50, 58, and 98 for D = 0.5, 0.63, 0.75, 0.88, and 1, respectively. The
largest system size considered for the ferromagnetic fluid is N = 49
in each case.

s = 1/2. Let D be the diameter of the particles. In these units,
the Hamiltonian is

Ĥ =
∑

i

−1

2
∇2

i +
∑
i>j

vH (rij ), (1)
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FIG. 3. (Color online) Optimal Gaussian exponent C for
the ferromagnetic crystal phase against the reciprocal of system
size N−1.

where

vH (r) =
{

0 if r > D,

∞ otherwise.
(2)

When we refer to “high density,” we mean that the value of D

is large (comparable with the radius of the circle that contains
one particle on average). In our calculations, we used finite
numbers N of particles in cells subject to periodic boundary
conditions. From these, we extrapolated to infinite system size,
as discussed in Sec. IV. (The effects of an additional weak,
long-range potential are discussed in Sec. VII.)

The potential energy is zero throughout the permitted region
of configuration space. Hence, the expected potential energy
is zero, and the system only has kinetic energy. Nevertheless,
the hard-core interaction has a significant effect on the energy
since it defines the boundary conditions on the solution of the
Schrödinger equation. Hence, the system does not behave like
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FIG. 4. (Color online) DMC energy E against hard-core diameter
D. Note that, when D = 0, the energies of the paramagnetic and
ferromagnetic fluids are 0.5 and 1 a.u. per particle, respectively.
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FIG. 5. (Color online) DMC energy of the different phases
relative to the energy of the paramagnetic fluid.

a noninteracting Fermi gas: the magnetic behavior is nontrivial
and the system must crystallize at a sufficiently high density.

Hard-core systems have a maximum density: the close-
packing limit. In 2D, the triangular lattice has the highest
packing fraction, with the maximum hard-core diameter being
Dmax =

√
2π/

√
3.

B. Qualitative features of the phase diagram

For infinitesimal D, the system resembles a noninteracting
Fermi gas. The momentum density is a unit step function. The
paramagnetic fluid phase is favored because it has the lowest
kinetic energy. The crystal is not even stable as an excited state
for small D.

As D is increased, the energy of the paramagnetic fluid rises
more rapidly than that of the ferromagnetic fluid because wave-
function antisymmetry already keeps parallel-spin particles
apart. The hard-core interactions have a greater effect on the
distribution of antiparallel-spin particles, with the short-range
PCF being forced to go to zero, as shown in Sec. VI A. The
momentum density of a hard-core fluid with D > 0 is not a
unit step function, but it retains a discontinuity at the Fermi
wave vector kF . The crystal becomes stable as D is increased,
but with a higher energy than that of the fluid.

At large D, the energies of the ferromagnetic and (frus-
trated) antiferromagnetic crystals are very similar. At some
value of D, the ferromagnetic fluid is lower in energy than
the paramagnetic fluid, but at some other value of D, the
crystal becomes more stable than either of the fluid phases. It
is a nontrivial problem to determine which of these transitions
occurs first. The crystal orbitals become delta functions in the
close-packing limit.

III. TRIAL WAVE FUNCTIONS

A. Slater-Jastrow-backflow wave functions

We used trial wave functions of Slater-Jastrow-backflow
form � = exp(J )S↑S↓. The Jastrow exponent J included
polynomial and plane-wave functions of the interparticle
distances23 together with a two-body term to impose the
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FIG. 6. (Color online) PCFs g(r) of hard-core systems at (a)
D = 0.5 a.u., (b) D = 0.75 a.u., (c) D = 0.88 a.u., and (d) D =
1 a.u. for different system sizes N . The results were all obtained with
VMC except where indicated otherwise.

hard-core boundary conditions, as described in Sec. III B, and
a three-body term.24 The backflow function consisted of a
polynomial expansion in the interparticle distance.25 The terms
in the Jastrow exponent and backflow function arising from
parallel- and antiparallel-spin pairs of particles were allowed
to differ.

For the fluid phases, we used plane-wave orbitals exp(ik · r)
in the Slater determinants S↑ and S↓. The fluid phases suffer
from momentum quantization effects (single-particle finite-
size errors). To reduce these, we performed twist averaging
in the canonical ensemble.26 For the crystal phases, we used
Gaussian orbitals exp(−C|r − Rp|2) centered on hexagonal
lattice sites {Rp}, where the exponent C in the crystal orbitals
was an optimizable parameter.

These calculations are similar to the QMC calculations
that have been performed to establish the zero-temperature
phase diagram of the three-dimensional homogeneous electron
gas14,27,28 (HEG) and 2D HEG.29–31

B. Hard-core two-body behavior

1. Antiparallel spins

Let us rewrite the Schrödinger equation for two hard-
core particles in terms of the center-of-mass and difference
coordinates. We assume the center of mass is in its zero-energy
ground state. The Schrödinger equation for the difference
coordinate r is

−∇2� = E�. (3)

For the boundary conditions, we assume that � = 0 at r = D

and � = 0 at r = R, where R is very large. By increasing R,
the ground-state eigenvalue E can be made arbitrarily close to
0. � is circularly symmetric in the ground state for antiparallel-
spin particles, so

−∂2�

∂r2
− 1

r

∂�

∂r
≈ 0, (4)

with general solution � ≈ A + B log(r). This approximation
is valid over any range of r that is small compared with R −
D. However, we are interested in particle separations of the
order D and slightly larger. Applying the boundary condition
�(D) = 0 gives

�(r) ∝ log(r/D), (5)

suggesting the antiparallel-spin two-body Jastrow factor in a
hard-core gas should be log(r/D).

The two-body behavior of hard-core gases was studied in
Ref. 32, but this work did not give the two-body Jastrow factor
for the 2D gas and did not consider parallel-spin pairs.

2. Parallel spins

Suppose the two hard-core particles have parallel spins.
In the lowest-energy state, the difference-coordinate wave
function is of the form � = W (r)r cos(θ ) and the energy
eigenvalue is zero in the limit that the region over which the
wave function is normalized is large. Hence, the Schrödinger
equation for the radial part is

−d2W

dr2
− 3

r

dW

dr
≈ 0. (6)
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The general solution over a range of r values that is small
compared with the region over which the wave function is
normalized is W (r) ≈ A + Br−2. By applying the boundary
condition W (D) = 0, one obtains W (r) ∝ 1 − D2/r2. So, for
small r ,

� ∝
(

1 − D2

r2

)
r cos(θ ), (7)

suggesting the parallel-spin two-body Jastrow factor in a hard-
core gas should be 1 − D2/r2.

C. Hard-core Jastrow factor

The wave function of a hard-core system must go linearly
to zero as the separation of any pair of particles approaches
D. To impose this behavior, the following term was included
between all pairs of particles in the Jastrow exponent J (in
addition to the polynomial and plane-wave terms):

uH (r) =

⎧⎪⎨
⎪⎩

−∞ if r � D,

log
[
tanh

(
r/D−1

α(1−r/LWS)

)]
if D < r < LWS,

0 if r � LWS,

(8)

where LWS is the radius of the circle inscribed in the Wigner-
Seitz cell of the simulation cell. The parameter α was fixed at
1; uH goes smoothly to zero at LWS. The other terms in the
Jastrow factor are analytic at r = D.

The exp(uH ) ≈ tanh[(r − D)/D] is not of the form
log(r/D) or 1 − D2/r2 suggested by the analytic results for
opposite-spin or same-spin hard-core particles, respectively,
but the short-range behavior is correct [linear in (r − D)
in the vicinity of r = D]. When optimized, the polynomial
and plane-wave terms in the Jastrow exponent describe all
two-body correlations. Optimized two-body Jastrow factors
are plotted in Fig. 1, confirming that the simple theory of
two-body correlations described in Sec. III B is approximately
valid.

D. Free-particle limit

It is interesting to consider the approach to the free-particle
limit as the diameter D tends to zero. In a three-dimensional
hard-core gas, similar arguments to those given in Secs. III B 1
and III B 2 show that the two-body Jastrow factors are approx-
imately 1 − D/r and 1 − D3/r3 for antiparallel and parallel
spins, respectively, both of which tend to unity as D → 0.
Hence, a Slater-Jastrow wave function for a three-dimensional
hard-core fluid reduces to a Slater determinant of plane-wave
orbitals in the limit of zero particle diameter. In the 2D
hard-core gas, the two-body Jastrow factors are approximately
log(r/D) and 1 − D2/r2 for antiparallel and parallel spins,
respectively. The antiparallel-spin two-body Jastrow factor is
the marginal case in which two-body correlations become
negligible over any given length scale as D is made small
so that free-particle behavior is recovered in the D → 0 limit.
In one dimension, however, the infinite contact potential that
remains when the D → 0 limit is taken prevents the hard-core
gas from exhibiting free-particle behavior, unless the system
is fully ferromagnetic.

E. Behavior of the local energy as hard-core particles collide

Suppose two antiparallel-spin hard-core particles 1 and 2
approach each other, i.e., their separation approaches D. Their
contribution to the Jastrow exponent is J12 = log(r12 − D).
Let us write the trial wave function as � = exp(J12)S, where
S is well behaved as the particles approach. Suppose that all
coordinates in the system are frozen, apart from the separation
of particles 1 and 2. The contribution to the local energy arising
from this coordinate is

EL12 = −∇2
12�

�

= |∇12J12|2 + ∇2
12J12 + 2∇12J12 · ∇12S

S
+ ∇2

12S

S

= 1

r12(r12 − D)

(
1 + 2r12 · ∇12S

S

)
+ ∇2

12S

S
. (9)

The local energy diverges when hard-core particles approach
one another, and the sign of the divergence depends on the
positions of all the particles. Hence, one can not remove
the divergence using a two-body Jastrow factor. By contrast,
when two charged point particles approach one another, the
divergence in the local energy can be removed by imposing
the Kato cusp conditions via the two-body Jastrow factor.33

The divergence is, in principle, no worse than that which
occurs at any other node. However, there are many extra
nodes introduced by the hard-core potentials on which the
local kinetic energy diverges. These nodes can cause DMC
population explosions,34 especially if three-body terms are
omitted from the Jastrow factor.

F. Need for a three-body Jastrow term

Physically, it is obvious that, at high densities, multibody
correlation effects will be important: motion is only possible
if the particles move collectively. In fact, as shown in
Table I, three-body Jastrow terms lower the VMC energy more
than backflow. This differs from the behavior found in the
HEG.35 We have therefore used three-body terms in all our
calculations. If the range of the three-body terms is restricted,
then the wave function becomes significantly poorer, as can be
seen in Table I. Unfortunately, the need to include long-range
three-body terms in the Jastrow factor makes the calculations
expensive.

G. Spin dependence in paramagnetic phases

We used separate two-body Jastrow and two-body backflow
terms for parallel- and antiparallel-spin pairs of particles in all
our calculations. We considered two possible spin dependences
for the three-body terms: either (A) using the same three-body
term for all triples of particles or (B) using separate three-
body terms for (i) triples involving three particles of the same
spin and (ii) triples involving two particles of one spin and
one particle of the opposite spin. VMC results obtained using
these two different possibilities are shown in Table II. It is
clear that allowing different three-body terms for different
spin configurations lowers the variational energy significantly
(although not by nearly as much as lifting the restriction on the
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TABLE I. Non-twist-averaged VMC and DMC results with
different wave functions (“WF”) for a paramagnetic fluid of N = 26
hard-core particles of diameter D = 1 a.u. The “SR BF” column
specifies whether or not the backflow function was restricted to be
short ranged (cutoff length 2.5 a.u.), while the “SR 3BJ” column
specifies whether or not the three-body Jastrow terms were restricted
to be short ranged (cutoff length 2.5 a.u.). Where the cutoff lengths
were not restricted, they approached the radius of the circle inscribed
in the Wigner-Seitz cell of the simulation cell. “T” and “F” denote
true and false, while “Var.” is the variance of the local energy.

Method WF SR BF SR 3BJ E (a.u./part.) Var. (a.u.)

VMC SJ 4.8242(4) 286
VMC SJB F 4.7172(9) 242
VMC SJB3 T T 4.6360(2) 160
VMC SJB3 F T 4.6272(1) 158
VMC SJ3 F 4.58672(8) 89
VMC SJB3 T F 4.5201(2) 70
VMC SJB3 F F 4.5072(6) 65
DMC SJ 4.4157(6)
DMC SJB F 4.4058(7)
DMC SJB3 F F 4.3930(8)

range of the three-body terms) and hence we have used spin
dependence B in all our production calculations.

H. Relative accuracy of wave functions for different phases

The variance of the energy is zero if the trial wave
function is an eigenfunction of the Hamiltonian. As shown in
Table III, the variance per particle is significantly lower for the
ferromagnetic fluid than for the paramagnetic fluid, indicating
that the trial wave function is more accurate for the former than
the latter. The variance per particle is similar for ferromagnetic
fluids and crystals near the transition density. Hence, if
anything, our results are biased in favor of ferromagnetic
phases.

I. Nature of phase transition

We have looked for a first-order phase transition by
comparing fixed-node DMC energies with fluid and crystal
orbitals, relying on the fixed-node approximation to impose
the symmetry of the phase on the wave function. However, it

TABLE II. Non-twist-averaged VMC results with different spin
dependences for a paramagnetic fluid of N = 26 hard-core particles
of diameter D = 1 a.u. The “SR BF & 3BJ” column specifies whether
or not the backflow function and three-body Jastrow terms were
restricted to be short ranged (cutoff length 2.5 a.u.). Where the cutoff
lengths were not restricted, they approached the radius of the circle
inscribed in the Wigner-Seitz cell of the simulation cell. “T” and “F”
denote true and false, while “Var.” is the variance of the local energy.

Spin dependence SR BF & 3BJ E (a.u./part.) Var. (a.u.)

A T 4.640(1) 165
B T 4.6360(2) 160
A F 4.534(1) 76
B F 4.5072(6) 65

TABLE III. Non-twist-averaged VMC results for paramagnetic
fluids with N = 26 hard-core particles and ferromagnetic fluids with
N = 25 hard-core particles.

D (a.u.) Phase Var. per part. (a.u.)

1 Paramagnetic fluid 2.49
1 Ferromagnetic fluid 1.76
1 Ferromagnetic crystal 0.736
0.88 Paramagnetic fluid 1.34
0.88 Ferromagnetic fluid 0.616
0.88 Ferromagnetic crystal 0.494
0.63 Paramagnetic fluid 0.385
0.63 Ferromagnetic fluid 0.147
0.63 Ferromagnetic crystal 0.228

is possible that there could actually be a continuous transition
from fluid to crystal behavior. The fact that the “fluid” wave
function tries to become crystal-like at high density and the
“crystal” wave function tries to become fluidlike at low density
(see Sec. VI) supports this view. Nevertheless, even if this
is the case, our calculations determine the region in which
crystallization is expected to take place, and demonstrate that
a ferromagnetic fluid phase is unlikely to occur.

IV. FINITE-SIZE EFFECTS

According to the simple theory given in Sec. III B 2,
the long-range parallel-spin two-body Jastrow exponent is
approximately given by

uαα(r) = log(1 − D2/r2) ≈ −D2/r2 + O(r−4). (10)

The 2D Fourier transform of the leading term does not have
a power-law behavior. In fact, numerical tests show that
limα→0

∫
r−2 exp(ik · r − αr) dr diverges logarithmically at

small k. So, for small k, uαα(k) may be written as −cD2 log(k),
where c is a positive constant.

The Chiesa-Holzmann-Martin-Ceperley36 approximation
to the long-range two-body finite-size correction to the kinetic
energy in 2D is

�T = −
∑

α

Nα

4(2π )2

∫ Q

0
2πkk2uαα(k) dk

= − N

8π

∫ Q

0
k3uαα(k) dk, (11)

where Q = 2
√

π/A is the radius of the circle in k space with
area (2π )2/A, and A = πN is the area of the simulation cell.
Inserting uαα(k) = −cD2 log(k) gives

�T ≈ πNcD2

2A2
[log(2

√
π/A) − 4π2/A2]

= O[D2N−1 log(N )]. (12)

Hence, ignoring the logarithmic factor, the leading-order
correction to the energy per particle due to the neglect of long-
range two-body correlations falls off as O(N−2). This is much
more rapid than the analogous result for the 2D HEG.37 The
leading-order correction is positive. Unsurprisingly, however,
two-body finite-size errors get rapidly more severe as D

increases.
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FIG. 7. (Color online) VMC structure factor of the paramagnetic
fluid at D = 0.63 a.u. for a range of system sizes N .

We have carried out numerical tests that show that the
bias due to twist averaging in the canonical ensemble in
two dimensions falls off as O(N−3/2), but with a small
prefactor. Residual single-particle errors in the canonical-
ensemble twist-averaged fluid energies are small compared
with the effect of twist averaging, and the difference between
the twist-averaged and non-twist-averaged energies is only
about 0.02 a.u. per particle at D = 1 a.u. for N = 10 and 26.
Hence, the O(N−2) behavior due to the neglect of long-range
two-body correlations dominates the systematic error for all
the hard-core diameters D that we have studied, as can be seen
in Fig. 2.

Several data points in Fig. 2 are outliers. This nonsystematic
behavior appears to be a genuine finite-size effect. The
finite-size “noise” in the crystal energies is more severe at
low densities, while the finite-size noise in the fluid energies
is more severe at very high densities. The theory of two-body
finite-size effects developed above breaks down for fluids at
high density and crystals at low density: the sign of the bias
is wrong. These cases are pathological in various respects. At
very high densities, the fluid energies obtained with the same
number of particles in different-shaped cells disagree, although
they extrapolate to the same value in the limit of infinite system
size. In fact, at very high density, it is geometrically impossible
to fit finite fluids in some cell shapes. As can be seen in Fig. 3,
the Gaussian exponent C of the crystal is not well behaved for
D � 0.75, suggesting that the crystal is becoming unstable.
As shown in Fig. 15, the momentum density is developing an
edge, leading to substantial single-particle finite-size errors.

As shown in Table I, restricting the range of the three-body
term raises the variational energy significantly. Three-body
correlations are therefore long ranged. So, there must be three-
body finite-size errors in the fluid and crystal energies obtained
in finite simulation cells. We assume that they are a “random”
error about the systematic finite-size bias due to two-body
finite-size effects. We have therefore obtained several E(N )
data points for each phase at each density in order to average
out the “noise” when extrapolating to infinite system size.
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FIG. 8. (Color online) VMC and DMC structure factors of the
paramagnetic fluid at D = 0.88 a.u. with N = 18 particles.

V. PHASE DIAGRAM

The energies of the different phases are compared in Fig. 4
and are plotted relative to the energy of the paramagnetic fluid
phase in Fig. 5. The continuous curves shown are Akima spline
interpolations between the DMC energies. (Akima spline
interpolation is stable to the presence of outliers in the data.38)
It can be seen that crystallization takes place when D =
0.83 a.u., leaving no region of stability for a ferromagnetic
fluid. (Recall that our calculations are, if anything, biased in
favor of the ferromagnetic fluid.) Thus, our calculations rule
out the possibility of an itinerant ferromagnetic fluid phase
in a 2D gas of particles with only hard-core interactions. For
those values of D for which the crystal has the lowest energy,
the energy difference between the antiferromagnetic39 and
ferromagnetic states is insignificant, showing that exchange
interactions in the crystalline phase are negligible.
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FIG. 9. (Color online) VMC structure factors of paramagnetic
fluids. For D = 0, the analytic result for a paramagnetic free-particle
gas is given.
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FIG. 10. (Color online) VMC structure factors of ferromagnetic
fluids and crystals. The D = 0 result is the analytic structure factor
for a ferromagnetic free-particle gas.

VI. OTHER PROPERTIES OF HARD-CORE GASES

A. Pair-correlation function

We have calculated the PCFs of the fluid phases of the
hard-core gas, and our results are shown in Fig. 6. The PCFs,
which were obtained without twist averaging, are not well
converged with respect to system size at high density: the
finite-size errors are oscillatory. Nevertheless, we can make
some qualitative comments about the physics revealed by the
PCF. It can be seen that there is excellent agreement between
the VMC and DMC results where the latter are available,
confirming that our trial wave functions are of high quality.

The distance between the peaks of the PCF obtained in
square cells at D = 1 a.u. is

√
π , which arises from the square-

cell geometry. The difference between the PCFs in hexagonal
and square cells is still significant at D = 0.88 a.u. and N =
26. The antiparallel-spin PCF evolves slowly toward g(r) =
1 (the free-particle result) as D is reduced. The size of the
exchange-correlation hole and the ripples in the parallel-spin
PCF are determined by the Fermi wave vector kF when D is
small.

B. Static structure factor

The static structure factor of a paramagnetic fluid at D =
0.63 a.u. for various values of N is plotted in Fig. 7. The
structure factor is well converged with respect to N . VMC and
DMC structure factors are compared in Fig. 8. The VMC and
DMC results are in close agreement everywhere except in the
immediate vicinity of the peak.

VMC-calculated structure factors for paramagnetic and
ferromagnetic hard-core gases are shown in Figs. 9 and 10,
respectively. Finite-size “noise” is much worse for ferromag-
netic phases. The fluid and crystal structure factors are similar,
especially at low densities.
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FIG. 11. (Color online) VMC momentum density of the param-
agnetic fluid at D = 0.88 a.u. at different system sizes N .

C. Momentum density

1. Results for fluids

The momentum density shown in Fig. 11 is reasonably
well converged with respect to N . VMC results for the
momentum densities of paramagnetic and ferromagnetic hard-
core systems are shown in Figs. 12 and 13, respectively.

2. Renormalization factors

The renormalization factor, the discontinuity Z in the
momentum density at the Fermi edge, is plotted against
hard-core diameter in Fig. 14. The finite-size errors in Z are
oscillatory, so we have averaged over the results obtained for
different system sizes N .

3. Results for crystals

The momentum densities of ferromagnetic hard-core crys-
tals are shown in Fig. 15. This figure strongly confirms the
conclusion that the crystal is unstable at D = 0.63 a.u.: the
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FIG. 12. (Color online) VMC momentum densities of paramag-
netic fluids at different hard-core diameters D.
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FIG. 13. (Color online) VMC momentum densities of ferromag-
netic fluids at different hard-core diameters D.

“crystal” momentum density develops a near discontinuity at
the Fermi wave vector.

VII. WEAK, LONG-RANGE INTERACTIONS

A. Form of the interaction

Our results show that, close to the transition from fluid to
crystal, the energies of the paramagnetic and ferromagnetic
fluids are very finely balanced, albeit with the paramagnetic
fluid always lying lower in energy. It is interesting to ask
whether a small change in the two-body potential might alter
the relative stabilities of these two fluid phases and allow a
region of stable ferromagnetic fluid.

As explained in Sec. I, it can be arranged that fermionic
molecules confined to a plane experience an additional long-
range, pairwise interaction varying as 	r−3, where r is the
interparticle separation and 	 is a constant.5,7 In a finite,
periodic cell, the two-body interaction between one particle
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FIG. 14. (Color online) Renormalization factor Z against D,
from fits to the momentum density.
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FIG. 15. (Color online) VMC momentum densities of ferromag-
netic crystals.

and all the images of another particle that is at a distance r
from the first is

vA(r) =
∑

R

	

|r + R|3

≈
∑
R∈S

	

|r̃ + R|3 + 	

A

∫
R>RS

dR
|r̃ + R|3

≈
∑
R∈S

	

|r̃ + R|3 + 2π	

ARS

(
1 + 3r̃2

4R2
S

)
+ O

(
R−5

S

)
,

(13)

where S is a circular region of radius RS centered on the
origin, and r̃ is the minimum image of r. By making RS

sufficiently large, the approximation to the infinite sum can
be made arbitrarily good.
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FIG. 16. (Color online) Change in energy resulting from the
inclusion of a 	r−3 interaction for a paramagnetic fluid of N = 18
hard-core particles of diameter D = 0.88 a.u.
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The “Madelung” term (the interaction of each particle with
its own images) is

vM =
∑
R�=0

	

|R|3

≈
∑

R∈S−{0}

	

|R|3 + 	

A

∫
R>RS

dR
|R|3

≈
∑

R∈S−{0}

	

|R|3 + 2π	

ARS

. (14)

The Hamiltonian for the finite, periodic cell is therefore

Ĥ = −1

2

∑
i

∇2
i +

∑
i>j

[vH (|r̃ij |) + vA(r̃ij )] + NvM

2
.

(15)

B. Convergence of the real-space sum

We have chosen RS such that 119 stars of lattice vectors
are summed over explicitly in square cells (for fluid phases)
and 86 stars are summed over in hexagonal cells (for crystal
phases). The error in the Madelung constant is about 2 ×
10−7 a.u. per particle for N = 18 particles (and smaller at
larger N ). The error in the additional interaction per particle
due to the finite number of stars of R vectors should therefore
be much smaller than 10−6 a.u. The error made in truncating
the real-space sum is therefore negligibly small compared with
the statistical error bars on our QMC energies.

C. Validity of perturbation theory

To a very good approximation, we can describe the effect
of the 	r−3 interaction using perturbation theory. The change
in the energy resulting from the additional interaction is
approximately given by the expectation of the interaction
operator with respect to the previously optimized wave
function for the unperturbed system, which can be evaluated
using VMC. For −1 < 	 < 1, this approximation reproduces
the full DMC energy difference to within about 0.002 a.u. at
D = 0.88 a.u., as shown in Fig. 16.

D. Finite-size errors

As with total energies, finite-size errors in the expectation
value of the extra interaction are larger and quasirandom for
the unstable phases. We extrapolate to infinite system size in
each case, as shown in Fig. 17.

E. Effect of weak interactions on the phase diagram

At D = 0.88 a.u., combining the VMC results for
〈∑i>j r−3

ij 〉 with the DMC energies in the absence of the
additional interaction, we find that

EPF = 3.2559 + 0.9296	,

EFF = 3.251 + 0.928	, (16)

EFC = 3.2305 + 0.9244	,

where EPF, EFF, and EFC are the energies in a.u. per particle for
the paramagnetic fluid, ferromagnetic fluid, and ferromagnetic
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FIG. 17. (Color online) VMC-evaluated expectation value of∑
i>j r−3

ij with respect to the nonreoptimized VMC wave function.

crystals, respectively, as a function of 	. The resulting offset
in the energy relative to the energy of the paramagnetic fluid
phase at a density close to the crystallization density is shown
in Fig. 18. The changes in the energies of the three phases
due to the inclusion of the 	r−3 tail are very similar. As
one would expect, a repulsive potential (	 > 0) favors phases
where the particles are kept apart (i.e., ferromagnetic over
paramagnetic phases, and crystals over fluids), whereas an
attractive interaction (	 < 0) favors a paramagnetic fluid the
most and a ferromagnetic crystal the least. There is no region
of stability for the ferromagnetic fluid, although it comes close
at 	 ≈ −5. However, this is a regime where the interaction
is strongly attractive, so that perturbation theory is no longer
valid, and a trial wave function that includes the possibility of
superfluid pairing is required for accurate QMC calculations.
It therefore seems unlikely that a weak interaction will have
much effect on the phase diagram.
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FIG. 18. (Color online) Energy of the ferromagnetic fluid and
crystal relative to the energy of the paramagnetic fluid against the
strength of the r−3 interaction for hard-core particles of diameter
D = 0.88 a.u.
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VIII. CONCLUSIONS

Gases of hard-core particles are a natural model for
ultracold-atom systems. Correlation effects in 2D hard-core
systems are surprisingly long ranged. Our QMC results show
that there is no regime in which itinerant ferromagnetism
occurs in a 2D hard-core fluid. As the hard-core diameter
D is increased, the system undergoes a transition from a
paramagnetic fluid to a crystal at D = 0.83 a.u. The absence
of a region of stability for a ferromagnetic fluid resembles
the situation in the 2D HEG.31 Including a weak r−3 tail in
the two-body interaction between hard-core particles does not

lead to a significant revision of the phase diagram. We have
presented QMC results for the PCFs, static structure factors,
and momentum densities of the fluid phases of the hard-core
gas.
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Rı́os, CASINO version 2.1 User Manual (Cambridge University,
Cambridge, UK, 2008).
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