48 research outputs found

    Introducing the notion of social context of collective trauma to ESTSS

    Get PDF
    Living amidst war and mass suffering while grasping the opportunity for professional growth, intertwined into my life perspective. Along the years, ESTSS provided a backdrop for my contacts with mental health colleagues from whom I learned, and among whom many became my friends. These rich experiences guided me towards promoting awareness within ESTSS of the importance of social context in which healing of traumatized populations is expected to progress. Each incident of organized violence leaves behind new scores of traumatized individuals and family members, among whom many will need support that may stretch their resources beyond reasonable limits. We need to acknowledge the hindering effects of living in such a social context and that many people that we meet as professionals may carry the burden of unresolved trauma, which should not go by unattended

    Relation between stimulus range, direct laoudness estimation and averaged cortical V-potential

    Get PDF
    Twelve subjects estimated the loudness of stimuli, once in a short range (50, 60 and 68 dB). and once in a large range (20, 50, 60, 68 and 80 dB). Concurently, evoked cortical responses to SO and 68 dB were recorded. The range markedly influenced the loudness estimations but no significant range-effect was found in the peak-to-peak amplitude of the Nt - P2 waves

    Regeneration bone tissue by new nanoparticules system based on hydroxiapatite as systems for local delivery of vitamin D3

    Get PDF
    Increased life expectancy in developed countries leads to an increase in the number of musculoskeletal disorders, such as osteoporosis, oasteoratritis thus compromising good dental treatment. There are many drug delivery systems based on hydroxyapatite used in bone tissue regeneration. Vitamin D3 is osteodiferentiation factor which regulates bone formation by increasing osteoblast differentiation and bone mineralization. The aim of this study is to examine new multifunctional nanoparticulate system for local delivery of active form of vitamin D3 by biochemical blood marker and histochemical analysis. The research was carried out on female Westar rats, aged 6-8 weeks, which have been implanted biomaterials in the artificial bone defect. Biochemical markers of osteogenesis were statistically significant after only 6 weeks of implantation. ALP activity in bone tissue was showed by histochemical analysis as well as high level reparatory skills. Local realized Vitamin D3 contribute to bone formation by increasing osteoblast differentiation and bone mineralization

    Bioactive composite materials in regeneration of the resorbed bone of alveolar ridges

    Get PDF
    Bone loss during the systemic osteoporosis has an important role in dentistry and medicine. The aim of the study was the application of bioactive micro and nanocomposite materials, alone, and in combination with autologous plasma in osteoporotic jaw bones of rats with artificially induced osteoporosis. The effect of these composites was measured by histomorphometric and atomic absorption spectrophotometric analysis. According to the best obtained results in regeneration and recovery of the resorbed alveolar bone, it can be concluded that nanocomposite combined with autologous plasma may be the material of choice to replace the osteoporotic damaged jaw bone

    Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta

    Get PDF
    The lack of bone in the jaw tegmenta inflicts major problem and leads to an inability to adequately treat stomatoprosthetic patients. If the bone tissue damage is minor, the balanced activities of osteoblasts and bone osteoclasts can repair it independently. If the damage is bigger it is necessary to support the biological potential to repair the bone, and for that reason nanoparticle\ud biomaterial Ca / Co-HAp was used in this study. The research was done on rats with uniform anatomical and physiological characteristics. Assessment of repair and consolidation of the jaw bone tegmenta was performed by istomorphometric and SEM analysis. The best results were obtained in the experimental group of animals where the Ca / Co-Hap was mixed with autologous\ud plasma. Following the implementation of the above mentioned nanocomposites, a significant formation of new bone was evident on the SEM analysis, as well as the rising of histomorphometric parameters of bone formation, which indicates that the Ca / Co-HAp nanocomposite is the material of choice for the rapid regeneration and repair of bone jaw tegmenta

    Hydroxyapatite and hydroxyapatite substituents in strengthening of the jaw bone tegmenta

    Get PDF
    In recent years, calcium hydroxyapatite (HAp) and its substituents are increasingly used in dentistry and medicine. The influence of nanoparticles Ca / Co-HAp in strengthening weak osteoporotic bone jaw tegmenta was tested in an experimental model. The study was conducted on Wistar soy rats, aged 6-8 weeks. The biomaterial was implanted in the osteoporoticly weakened mandible of these animals. The best results in the strengthening of the lower jaw bone tegmenta were achieved 24 weeks after implantation of hydroxyapatite nanoparticles in which the calcium ion was substituted with 12% of cobalt ions. Histochemical parameters of bone synthesis were in a statistically significant increase. SEM analysis showed a high degree of osteogenetic ability of nano-particulate material implanted in the bone defect

    Nanoparticles Ca/Co-HAp in the treatment of weakened bones jaw tegmenta

    Get PDF
    The lack of bone in the jaw tegmenta inflicts major problem and leads to an inability to adequately treat stomatoprosthetic patients. If the bone tissue damage is minor, the balanced activities of osteoblasts and bone osteoclasts can repair it independently. If the damage is bigger it is necessary to support the biological potential to repair the bone, and for that reason nanoparticlebiomaterial Ca / Co-HAp was used in this study. The research was done on rats with uniform anatomical and physiological characteristics. Assessment of repair and consolidation of the jaw bone tegmenta was performed by istomorphometric and SEM analysis. The best results were obtained in the experimental group of animals where the Ca / Co-Hap was mixed with autologousplasma. Following the implementation of the above mentioned nanocomposites, a significant formation of new bone was evident on the SEM analysis, as well as the rising of histomorphometric parameters of bone formation, which indicates that the Ca / Co-HAp nanocomposite is the material of choice for the rapid regeneration and repair of bone jaw tegmenta

    A Facile Determination Method for an Androstane-based Lung Cancer Inhibitor Loaded in Nano/Micro Particles Based on Hydroxyapatite by Means of DTA/TGA Coupled with On-line Mass Spectrometry

    Get PDF
    In our study, we examined the possibilities for the application of Thermo-Gravimetric Analysis/Differential-Thermal Analysis (DTA/TGA) coupled on-line with mass spectrometry (MS) as a fingerprint for identification purposes in drug loading processes. Androstane derivative 17β-hydroxy-17α-picolyl-androst-5-en-3β-yl acetate (2-OAc) with antitumor activity was loaded in nano hydroxyapatite (HAp) coated with chitosan-poly(D,L)-lactide-co-glycolide (Ch-PLGA) by emulsification and finally freeze-dried. By means of DTA/TGA-MS, it was quickly determined that the form of 2-OAc was the same before and after loading. The observed exothermic and endothermic processes due to the transformation of material with simultaneous analysis of gas products have proven to be successful in the analysis of drug loading processes in multi-component ceramic-polymer carriers. The loading efficiency of 74.7% was determined using the Differential Scanning Calorimetry (DSC) technique. A FT-IR analysis confirmed the qualitative composition of the synthesized 2-OAc-loaded HAp/Ch-PLGA. The in vitro antiproliferative activity was evaluated against human cell lines: lung adenocarcinoma (A549), as well as healthy fetal lung fibroblasts (MRC-5). The results of DET and MTT tests have revealed a high viability of healthy cells MRC-5 (82%) and the death of cancer cells A549 (46%) after a treatment with 2-OAc-loaded HAp/Ch-PLGA

    Hemolytic activity of bioactive nanocomposites

    Get PDF
    Huge range of tested biomaterials in recent decades has emerged as an ideal scaffold for cell growth, but few have demonstrated clinical efficacy. Among them, synthetic hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is the most promising because of its biocompatibility, bioactivity, and osteoconductivity. Biocompatibility represents the primary concern for any material to be used as a substitute for natural tissue. Hydroxyapatite particles interact with numerous cellular systems in vivo, and some of these interactions may lead to cell damage and to stimulate platelet activation, coagulation and thrombus formation. The aim of this work was to examine the hemocompatibility of nanocalcium hydroxyapatite substituted with 5% and 12% cobalt (Ca /CoHAp) and hydroxyapatite/polylactidcoglicolid (HAp / PLGA) in relation to pure HAp by testing their hemolytic activities. The results show the discrepancy in hemolytic activity of implanted matherials. The degree of crystallinity of samples had a more dominant influence on hemolysis than the percentage of substituted cobalt. Hemolysis ratios of the nanocalcium hydroxyapatite substituted with cobalt samples were below 3%, indicating good blood compatibility and that they are promising for medical application
    corecore