238 research outputs found

    Supplementation of iron alone and combined with vitamins improves haematological status, erythrocyte membrane fluidity and oxidative stress in anaemic pregnant women

    Get PDF
    Pregnancy is a condition exhibiting increased susceptibility to oxidative stress, and Fe plays a central role in generating harmful oxygen species. The objective of the present study is to investigate the changes in haematological status, oxidative stress and erythrocyte membrane fluidity in anaemic pregnant women after Fe supplementation with and without combined vitamins. The study was a 2 months double-blind, randomised trial. Pregnant women (n 164) were allocated to four groups: group C was the placebo control group; group I was supplemented daily with 60 mg Fe (ferrous sulphate) daily; group IF was supplemented daily with Fe plus 400 µg folic acid; group IM was supplemented daily with Fe plus 2 mg retinol and 1 mg riboflavin, respectively. After the 2-month trial, Hb significantly increased by 15·8, 17·3 and 21·8 g/l, and ferritin by 2·8, 3·6 and 11·0 µg/l, in the I, IF and IM groups compared with placebo. Polarisation (¿) and microviscosity (¿) decreased significantly in other groups compared with placebo, indicating an increase in membrane fluidity. Significant decreases of ¿ and ¿ values compared with group C were 0·033 and 0·959 for group I, 0·037 and 1·074 for group IF and 0·064 and 1·865 for group IM, respectively. In addition, significant increases of glutathione peroxidase activities and decreases of malondialdehyde were shown in all treated groups, as well as increases of plasma retinol and urine riboflavin in group IM. The findings show that supplementation with Fe and particularly in combination with vitamins could improve the haematological status as well as oxidative stress and erythrocyte membrane fluidit

    Superconductivity in pressurized CeRhGe3 and related non-centrosymmetric compounds

    Full text link
    We report the discovery of superconductivity in pressurized CeRhGe3, until now the only remaining non-superconducting member of the isostructural family of non-centrosymmetric heavy-fermion compounds CeTX3 (T = Co, Rh, Ir and X = Si, Ge). Superconductivity appears in CeRhGe3 at a pressure of 19.6 GPa and the transition temperature Tc reaches a maximum value of 1.3 K at 21.5 GPa. This finding provides an opportunity to establish systematic correlations between superconductivity and materials properties within this family. Though ambient-pressure unit-cell volumes and critical pressures for superconductivity vary substantially across the series, all family members reach a maximum Tcmax at a common critical cell volume Vcrit, and Tcmax at Vcrit increases with increasing spin-orbit coupling strength of the d-electrons. These correlations show that substantial Kondo hybridization and spin-orbit coupling favor superconductivity in this family, the latter reflecting the role of broken centro-symmetry.Comment: 15 pages and 4 figure

    Generalized Interpolation Material Point Approach to High Melting Explosive with Cavities Under Shock

    Full text link
    Criterion for contacting is critically important for the Generalized Interpolation Material Point(GIMP) method. We present an improved criterion by adding a switching function. With the method dynamical response of high melting explosive(HMX) with cavities under shock is investigated. The physical model used in the present work is an elastic-to-plastic and thermal-dynamical model with Mie-Gr\"uneissen equation of state. We mainly concern the influence of various parameters, including the impacting velocity vv, cavity size RR, etc, to the dynamical and thermodynamical behaviors of the material. For the colliding of two bodies with a cavity in each, a secondary impacting is observed. Correspondingly, the separation distance DD of the two bodies has a maximum value DmaxD_{\max} in between the initial and second impacts. When the initial impacting velocity vv is not large enough, the cavity collapses in a nearly symmetric fashion, the maximum separation distance DmaxD_{\max} increases with vv. When the initial shock wave is strong enough to collapse the cavity asymmetrically along the shock direction, the variation of DmaxD_{\max} with vv does not show monotonic behavior. Our numerical results show clear indication that the existence of cavities in explosive helps the creation of ``hot spots''.Comment: Figs.2,4,7,11 in JPG format; Accepted for publication in J. Phys. D: Applied Physic

    Phase separating binary fluids under oscillatory shear

    Full text link
    We apply lattice Boltzmann methods to study the segregation of binary fluid mixtures under oscillatory shear flow in two dimensions. The algorithm allows to simulate systems whose dynamics is described by the Navier-Stokes and the convection-diffusion equations. The interplay between several time scales produces a rich and complex phenomenology. We investigate the effects of different oscillation frequencies and viscosities on the morphology of the phase separating domains. We find that at high frequencies the evolution is almost isotropic with growth exponents 2/3 and 1/3 in the inertial (low viscosity) and diffusive (high viscosity) regimes, respectively. When the period of the applied shear flow becomes of the same order of the relaxation time TRT_R of the shear velocity profile, anisotropic effects are clearly observable. In correspondence with non-linear patterns for the velocity profiles, we find configurations where lamellar order close to the walls coexists with isotropic domains in the middle of the system. For particular values of frequency and viscosity it can also happen that the convective effects induced by the oscillations cause an interruption or a slowing of the segregation process, as found in some experiments. Finally, at very low frequencies, the morphology of domains is characterized by lamellar order everywhere in the system resembling what happens in the case with steady shear.Comment: 1 table and 12 figures in .gif forma

    Changes in Continental Freshwater Discharge from 1948 to 2004

    Get PDF
    A new dataset of historical monthly streamflow at the farthest downstream stations for the world’s 925 largest ocean-reaching rivers has been created for community use. Available new gauge records are added to a network of gauges that covers ∼80 × 106 km2 or ∼80% of global ocean-draining land areas and accounts for about 73% of global total runoff. For most of the large rivers, the record for 1948–2004 is fairly complete. Data gaps in the records are filled through linear regression using streamflow simulated by a land surface model [Community Land Model, version 3 (CLM3)] forced with observed precipitation and other atmospheric forcings that are significantly (and often strongly) correlated with the observed streamflow for most rivers. Compared with previous studies, the new dataset has improved homogeneity and enables more reliable assessments of decadal and long-term changes in continental freshwater discharge into the oceans. The model-simulated runoff ratio over drainage areas with and without gauge records is used to estimate the contribution from the areas not monitored by the gauges in deriving the total discharge into the global oceans. Results reveal large variations in yearly streamflow for most of the world’s large rivers and for continental discharge, but only about one-third of the top 200 rivers (including the Congo, Mississippi, Yenisey, Paraná, Ganges, Columbia, Uruguay, and Niger) show statistically significant trends during 1948–2004, with the rivers having downward trends (45) outnumbering those with upward trends (19). The interannual variations are correlated with the El Niño–Southern Oscillation (ENSO) events for discharge into the Atlantic, Pacific, Indian, and global ocean as a whole. For ocean basins other than the Arctic, and for the global ocean as a whole, the discharge data show small or downward trends, which are statistically significant for the Pacific (−9.4 km3 yr−1). Precipitation is a major driver for the discharge trends and large interannual-to-decadal variations. Comparisons with the CLM3 simulation suggest that direct human influence on annual streamflow is likely small compared with climatic forcing during 1948–2004 for most of the world’s major rivers. For the Arctic drainage areas, upward trends in streamflow are not accompanied by increasing precipitation, especially over Siberia, based on available data, although recent surface warming and associated downward trends in snow cover and soil ice content over the northern high latitudes contribute to increased runoff in these regions. The results are qualitatively consistent with climate model projections but contradict an earlier report of increasing continental runoff during the recent decades based on limited records

    A USCLIVAR Project to Assess and Compare the Responses of Global Climate Models to Drought-Related SST Forcing Patterns: Overview and Results

    Get PDF
    The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models

    Preplanned Studies: Orofacial Clefts in High Prevalence Area of Birth Defects — Five Counties, Shanxi Province, China, 2000–2020

    Get PDF
    What is already known on this topic?: The prevalence of structural birth defects, especially neural tube defects, decreased after national folic acid (FA) supplementation initiation. / What is added by this report?: The prevalence of orofacial clefts (OFCs) in five counties of Shanxi Province in northern China, including most subtypes except cleft palate, showed a downward trend in the past two decades. In this study, pre-perinatal prevalence increased due to earlier detection. / What are the implications for public health practice?: Periconceptional supplementation with FA may contribute to the decline in OFCs prevalence, while the effect on the OFCs subtype needs further investigation. Continuing to advocate for earlier supplementation (3 months before conception) and increased supplementation frequency (daily consumption) could promote further reduction in the prevalence of OFCs. Specific surveillance of this effect in the era of universal three-child policy is warranted

    Identification of Molecular Pathways Facilitating Glioma Cell Invasion In Situ

    Get PDF
    Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion. In this study, we used a unique microarray profiling approach on a human glioma stem cell (GSC) xenograft model to explore gene expression changes in situ in Invading Glioma Cells (IGCs) compared to tumor core, as well as changes in host cells residing within the infiltrated microenvironment relative to the unaffected cortex. IGCs were found to have reduced expression of genes within the extracellular matrix compartment, and genes involved in cell adhesion, cell polarity and epithelial to mesenchymal transition (EMT) processes. The infiltrated microenvironment showed activation of wound repair and tissue remodeling networks. We confirmed by protein analysis the downregulation of EMT and polarity related genes such as CD44 and PARD3 in IGCs, and EFNB3, a tissue-remodeling agent enriched at the infiltrated microenvironment. OLIG2, a proliferation regulator and glioma progenitor cell marker upregulated in IGCs was found to function in enhancing migration and stemness of GSCs. Overall, our results unveiled a more comprehensive picture of the complex and dynamic cell autonomous and tumor-host interactive pathways of glioma invasion than has been previously demonstrated. This suggests targeting of multiple pathways at the junction of invading tumor and microenvironment as a viable option for glioma therapy
    corecore