
Outcomes of NOAA MAPP Model Diagnostics Task Force activities to promote process-

oriented diagnosis of models to accelerate development are described.
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R	 ealistic climate and weather forecasting models  
	 grounded in sound physical principles are  
	 necessary to produce confidence in projections 

of future climate for the next century and predictions 
for days to seasons. However, global models continue 
to suffer from important and often common biases 
that impact their ability to provide reliable represen-
tations of weather and future climate. These include 
biases in the cold tongue and intertropical conver-
gence zone regions (e.g., Li and Xie 2014; Grose et al. 
2014), the structure of El Niño–Southern Oscillation 
(ENSO) sea surface temperature (SST) and precipita-
tion anomalies (e.g., Bellenger et al. 2014; Grose et al. 
2014), simulation of the Madden–Julian oscillation 
(MJO; Kim et al. 2014a; Hung et al. 2013; Jiang et al. 
2015; Ahn et al. 2017), tropical monsoon precipitation 
and Indian Ocean processes (e.g., Sperber et al. 2013; 
Annamalai et al. 2017), the strength of the Atlantic 
meridional overturning circulation (AMOC; e.g., 
Wang et al. 2014), extratropical cyclone tracks (Zappa 
et al. 2013), tropical–extratropical teleconnections 
(e.g., Sheffield et al. 2013a,b; Henderson et al. 2017), 
and general interactions of clouds with the large-scale 
circulation (Stevens and Bony 2013), among others. 
Some aspects of simulations can often be improved, 

but seemingly for the wrong reasons. For example, 
improving biases in model tropical intraseasonal 
variability often systematically degrades other aspects 
of the simulation like the mean state (Kim et al. 2011; 
Mapes and Neale 2011; Hannah and Maloney 2014). 
Model biases are rooted in imperfect parameteriza-
tions of unresolved processes.

The climate and weather forecasting commu-
nities have a long-standing and high interest in 
conducting process studies and applying process-
oriented diagnostics (PODs) that are designed to 
inform parameterization improvements to address 
these long-standing model biases (e.g., Eyring et al. 
2019). A POD characterizes a specific physical pro-
cess or emergent behavior that is hypothesized to be 
related to the ability to simulate an observed phe-
nomenon. An example of an observed phenomenon 
is the intraseasonal variability of tropical convection, 
as could be measured by an index or a power spectra 
of precipitation variance in the tropics. PODs rep-
resenting the sensitivity of atmospheric convection 
to free-tropospheric humidity demonstrate a strong 
coupling between convection and moisture on daily 
time scales, which are also able to discern models with 
strong and weak intraseasonal variability (e.g., Kim 
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et al. 2014a). Evaluating new model configurations 
against observations can determine whether a par-
ticular process is well represented, ensure that models 
produce the right answers for the right reasons, and 
identify gaps in the understanding of phenomena. 
Process oriented “metrics” are scalar quantities that 
can be derived from some PODs.

A key need is incorporation of PODs into standard 
diagnostics packages that are applied to develop-
ment versions of models, allowing the diagnosis to 
be repeatable across multiple model versions and 
generations. A significant barrier is the lack of a 
mechanism for getting community-developed PODs 
into the modeling center development process. This 
paper describes outcomes of activities by the National 
Oceanic and Atmospheric Administration (NOAA) 
Modeling, Analysis, Prediction, and Projections 
program (MAPP) Model Diagnostics Task Force 
(MDTF) to promote development of PODs and their 
application to climate and weather prediction models. 
A product of the first phase of the MDTF (2015–18) 
is the creation of select demonstrative PODs and a 
modeler-oriented open-source software framework 
that is portable, extensible, and open for contribu-
tion of PODs from the community. The framework 
is conceived to be compatible with and complemen-
tary to other efforts such as European Earth System 
Model Bias Reduction and Assessing Abrupt Climate 
Change (EMBRACE) project/Earth System Model 
eValuation Tool (ESMValTool) and Coordinated 
Set of Model Evaluation Capabilities (CMEC) that 

use open-source software packages for multimodel 
evaluation. Because most other efforts have thus far 
largely emphasized basic performance metrics for 
models, the MDTF effort described here is comple-
mentary and advantageous to these other efforts as 
they expand their POD capabilities.

This paper is the centerpiece of an American 
Meteorological Society (AMS) special collection de-
voted to process-oriented evaluation of climate and 
Earth system models (https://journals.ametsoc.org 
/topic/process_oriented_model_diagnostics). Other 
articles in this collection describe the scientific basis 
for individual PODs. This centerpiece paper provides 
a summary of these individual diagnostics and others 
being developed by the MDTF, including development 
of a software framework to entrain these PODs to al-
low ease of use by modeling centers. The second sec-
tion describes existing institutional efforts and needs, 
including details on the MDTF and modeling center 
perspectives. Existing community efforts at process-
oriented diagnosis are then discussed. The fourth 
section provides examples of key PODs and metrics 
developed by the MDTF during its first three years 
and plans for expansion of this diagnostic set. The 
integrative open-source software framework to entrain 
these diagnostics is then described. The last section 
provides a summary and a path forward for PODs.

THE NOAA MAPP MDTF AND MODELING 
CENTER NEEDS. Brief summary of MDTF. In 2015 
and 2018, NOAA’s MAPP program solicited projects 
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to develop PODs for model development. These 
funded projects and the investigators leading them 
ultimately constituted the NOAA MDTF. At the 
time of the initial proposal solicitation, the global 
modeling community was between cycles of the 
Coupled Model Intercomparison Project (CMIP), and 
modeling centers were actively moving on from their 
CMIP5-class models toward developing and testing 
their CMIP6-class models. Performance evaluations 
and analyses of CMIP5 class models were becom-
ing less useful for informing next-generation model 
development activities.

NOAA’s CMIP5 Task Force (2011–14) discussed 
the idea of expanding upon nascent POD develop-
ment efforts in the field, such as the Working Group 
on Numerical Experimentation (WGNE) MJO Task 
Force’s initial work on PODs (Wheeler et al. 2013; 
Kim et al. 2014a, 2015), and others described below. 
MDTF activities were designed to build on analyses 
performed by the CMIP5 Task Force and others by 
providing an opportunity for nonfederal scientists 
to contribute to model development activities at 
the NOAA Geophysical Fluid Dynamics Labora-
tory (GFDL) and the National Science Foundation 
National Center for Atmospheric Research (NCAR). 
The MDTF enabled nonfederal participating scien-
tists to gain access to development versions of the 
next-generation models and work with modeling cen-
ter staff toward developing PODs that could provide 
physical insight into the sources of model bias. The 
second phase of this activity, which began in 2018, is 
leveraging the CMIP6 experiments for further diag-
nostic development and model evaluation.

The MDTF has engaged over 50 scientists from 6 
laboratories and operational centers and 15 academic 
institutions. During its first phase (2015–18), the 
MDTF was led by Eric Maloney (Colorado State 
University), and co-led by Yi Ming (GFDL), Andrew 
Gettelman (NCAR), David Neelin (UCLA), and Aiguo 
Dai (University at Albany). MDTF activities have 
included two major thrusts: 1) coordinating and sup-
porting community development of diagnostics and 
metrics for a variety of physical systems and modeling 
and process areas targeting known model biases, and 
2) designing a software framework useable at GFDL 
and NCAR that is f lexible enough to incorporate 
PODs from disparate community efforts that may be 
written in diverse coding languages. PODs developed 
or under development for the first task include

•	 cloud microphysical processes;
•	 tropical and extratropical cyclones;
•	 ENSO teleconnections and atmospheric dynamics;

•	 land–atmosphere interactions;
•	 MJO moisture, convection, and radiative processes;
•	 precipitation diurnal cycle;
•	 AMOC;
•	 Arctic sea ice;
•	 lake-effect processes;
•	 North American monsoon;
•	 radiative forcing and cloud–circulation feedbacks; 

and
•	 temperature and precipitation extremes.

These diverse, somewhat eclectic focal areas 
were determined by the submitted competitive pro-
posals that emerged successfully from the MAPP 
panel reviews. They also ref lect key model biases 
that impact climate and climate variability. While 
modeling centers are aware of biases in all of these 
areas, the specific PODs developed by the MDTF to 
address these biases are unique to our knowledge. 
Continued development of these PODs is supported 
through MAPP proposal solicitations. This com-
petitive solicitation model for advancing the process-
oriented activity encourages a bottom-up design of 
the diagnostics framework and is driven by organic, 
mutually beneficial interactions between modeling 
center and academic scientists and staff as opposed 
to top-down engineered engagements. NOAA has 
provided a funding commitment to this activity going 
forward, and the new leadership team of the MDTF 
led by David Neelin of UCLA has made explicit plans 
to increase engagement with complementary efforts 
such as those at the Program for Climate Model 
Diagnosis and Intercomparison (PCMDI), as well 
as outreach to the community through sessions and 
presentations at conferences and through participa-
tion in MDTF teleconferences. These efforts will 
help navigate the political and technical challenges 
in pursuing our POD concept going forward.

Modeling center perspectives. MDTF activities are 
designed to support model development and the di-
agnostic workflow at major modeling centers. Centers 
typically have a workflow containing a package of 
diagnostic comparisons with model output, which 
enables rapid analysis of many aspects of a model 
run. The method typically is for a large package to 
be constructed to generate diagnostics that many 
different developers may want to look at, enabling a 
multivariate and multidisciplinary approach to model 
evaluation. One major MDTF goal is to provide an 
extensible mechanism for community scientists to 
contribute PODs that can be integrated into the 
workflow at modeling centers.
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Traditionally, diagnostics for climate models are 
based on monthly mean statistics and climatologies. 
Increasingly, models are being analyzed in more 
detail against observations of specific processes, and 
the MDTF is approaching PODs in this spirit. The 
closer to a model process the observations and evalu-
ation are, the better the ability to constrain the pro-
cess and hence provide a guide to parameterization 
improvement. For a simple example: cloud radiative 
effects at the top of the atmosphere are a nonunique 
function of cloud microphysical properties (drop 
number and liquid water path). Thus, constraining 
radiative effects of clouds is better done in conjunc-
tion with detailed observations of cloud microphysics 
than with just radiative fluxes.

E X I S T I N G  P R O C E S S - O R I E N T E D 
DIAGNOSTIC EFFORTS. The MDTF PODs 
effort is inspired by, builds upon, and in many cases 
is complementary to prior and existing community 
efforts at model diagnosis. Such existing efforts 
that have influenced the MDTF are described here, 
although this list is likely not exhaustive. Individual 
modeling centers also have their own diagnostics 
suites that perform diagnosis in a similar spirit, but 
for individual models. The MDTF developed dif-
ferently from many of the efforts described here, in 
that it started from an initially small group of POD 
developers in collaboration with two modeling centers 
with a focus on model improvement rather than gen-
eral model evaluation, although other efforts have 
recently expanded emphasis on process evaluation. 
Community developers and modeling centers worked 
together from day 1 to craft a mechanism that was 
as flexible and useful as possible for entrainment of 
community PODs into center development packages.

The WGNE MJO task force. The WGNE MJO task 
force (www.wmo.int/pages/prog/arep/wwrp/new 
/MJO_Task_Force_index.html) was developed in 
2010 under the Years of Tropical Convection (Waliser 
et al. 2012) with an explicit goal to foster improved 
MJO simulations in global models (Wheeler et al. 
2013). One goal of the MJO task force is to promote 
PODs/metrics for the MJO that facilitate model im-
provement. Several PODs were developed including 
an assessment of the sensitivity of tropical convec-
tion to lower-free-tropospheric moisture (Kim et al. 
2014a), normalized gross moist stability (Benedict 
et al. 2014; Hannah and Maloney 2014; Jiang et al. 
2015), and the strength of cloud–radiative feedbacks 
(Kim et al. 2015). The POD work of the MJO task 
force was an early inspiration behind the efforts of the 

NOAA MDTF, and a mutual benefit is that the frame-
work developed by the MDTF may allow broader 
community dissemination of PODs that foster the 
improvement of MJO simulations. The MDTF held a 
joint meeting with the MJO Task Force at the WGNE 
Systematic Errors Workshop in Montreal in 2017 to 
initiate collaboration on diagnostic efforts.

European EMBR ACE projec t /ESMValTool .  The 
European Union–funded EMBRACE project has 
developed a package called the ESMValTool (Eyring 
et al. 2016a,b). This tool was originally developed 
from the Chemistry-Climate Model Validation 
Activity (CCMVal) diagnostic package (Gettelman 
et al. 2012). The ESMValTool is a flexible and com-
munity-oriented diagnostic framework that uses 
standard model files as input, similar to the MDTF 
tool described below, and provides a structured set of 
diagnostic output plots. The spirit of the tool is similar 
to that of the MDTF, and because the ESMValTool 
uses similar inputs and a similar structure, diag-
nostics coded for one tool [ESMValTool is largely in 
Python, derived from NCAR Command Language 
(NCL) code] should be applicable in the other. The 
ESMValTool is increasingly incorporating process-
level information, motivated by a cited community 
need to bring more process-level information to bear 
on model evaluation (Eyring et al. 2019).

The Coordinated Set of Model Evaluation Capabilities. 
CMEC is an open-source package incorporating the 
PCMDI Metrics Package (PMP), the International 
Land Modeling Benchmarking Project tool (ILAMB), 
and the parallel Toolkit for Extreme Climate Analysis 
(TECA). As described in Gleckler et al. (2016), the 
PMP currently provides an open-source pack-
age based on Python and Ultrascale Visualization 
Climate Data Analysis Tools (UV-CDAT; e.g., Santos 
et al. 2013; Williams et al. 2016) that compares climate 
models to observations using a set of basic perfor-
mance metrics and statistics. The PMP development 
team is open to working with community users 
to entrain more diagnostics into the package, and 
future releases plan to incorporate more extensive 
model evaluation based on emergent constraints and 
process-level diagnosis. ILAMB provides a frame-
work for evaluating land surface models that includes 
benchmarking the realism of specific processes that 
allow good land surface performance (Luo et al. 2012). 
TECA is a parallelized software package in C++ 
designed to detect extreme climate events in model 
fields such as tropical and extratropical cyclones 
and atmospheric rivers (Prabhat et al. 2012). As of 

1668 | SEPTEMBER 2019

http://www.wmo.int/pages/prog/arep/wwrp/new/MJO_Task_Force_index.html
http://www.wmo.int/pages/prog/arep/wwrp/new/MJO_Task_Force_index.html


late 2018, the MDTF has already entrained PCMDI 
into explicit discussions in teleconferences and at 
meetings to assure compatibility and complementar-
ity of diagnostics efforts.

GEWEX Process Evaluation Study. The Global Energy 
and Water Exchanges (GEWEX) Process Evaluation 
Study (PROES) has been launched as a GEWEX-wide 
community effort that aims to advance understanding 
of key climate processes and their representations 
in weather prediction and global climate models 
(Stephens et al. 2015). In particular, GEWEX-PROES 
is intended to exploit multiple satellite observations 
to diagnose the processes relevant to water and 
energy balances and thereby to advance the models 
at a fundamental level. The aims of GEWEX-PROES 
are to better understand Earth’s energy and water 
cycles, diagnose reasons for model bias in simulating 
these cycles, and facilitate improved representation 
of processes underlying the energy and water cycles 
in models (Stephens et al. 2015). Although proposed 
as a GEWEX-based effort, the GEWEX-PROES also 
seeks strong connection with other efforts in the cli-
mate study community beyond GEWEX, such as the 
World Climate Research Program Grand Challenges, 
CMIP, the Cloud Feedback Model Intercompari-
son Project (CFMIP), the Observations for Model 
Intercomparisons Project (obs4MIPs), and WGNE. 
GEWEX-PROES is composed of projects including 
three main ingredients: 1) collection of datasets that 
allow for process diagnosis, 2) development of tools 
or methodologies constructed from data that enable 
process evaluation, and 3) design and execution of 
model simulations that will be analyzed with the 
diagnostic methodologies applied.

CFMIP Diagnostic Codes Catalogue. The CFMIP 
Diagnostic Codes Catalogue is a showcase of metrics 
and diagnostics on cloud-related processes to evalu-
ate their representations in global climate models 
(Tsushima et al. 2017). It is intended to integrate 
existing methodologies for diagnosing key aspects 
of the cloud–climate feedback developed by members 
of the CFMIP community. This community effort 
assembles the metrics and diagnostics in the form of 
code repositories that allow open access. The result 
helps facilitate use of the metrics/diagnostics by the 
wider climate community and also encourages ad-
ditional diagnostics to be included in the catalogue 
as long as they are documented in peer-reviewed pub-
lications and source code is provided. Given that the 
effort emerges from CFMIP, the catalogue is intended 
to serve as a shared toolkit that enhances analysis of 

output from CFMIP and CMIP6 model experiments 
with a particular focus on clouds. The European 
Union Cloud Intercomparison, Process Study and 
Evaluation Project (www.euclipse.eu/index.html) 
produced one such set of cloud diagnostics entrained 
into the CFMIP Diagnostic Codes Catalogue.

EXAMPLES OF PROCESS-ORIENTED 
DIAGNOSTICS. This section describes efforts to 
develop PODs for climate model evaluation by the 
NOAA MAPP MDTF during its first three years. 
References are provided where expanded science 
description for these diagnostics can be found. We 
are not to our knowledge aware that the specific 
PODs presented here have been previously employed 
by modeling centers. This diagnostic set will be 
supplemented with PODs developed by new investi-
gators entrained into the task force during the 2018 
solicitation, and hence is continually evolving. The 
PODs currently entrained into the MDTF software 
framework at the time of this writing are noted at the 
website linked in the next section. This approach thus 
differs from products provided by bodies such as the 
U.S. Climate Variability and Predictability Program 
(CLIVAR) MJO Working Group (Waliser et al. 2009), 
which provided a package more or less frozen at the 
time of publication. We also stress that the software 
framework described below was developed to easily 
incorporate other PODs contributed by the com-
munity in addition to those described here. For ex-
ample, approaches that allow the spatial and temporal 
dependence of two geophysical fields to be assessed 
in increasingly sophisticated ways, including more 
robust assessments of causality, might be employed 
in future diagnostics contributed by the MDTF and 
broader community (e.g., Livina et al. 2008; Moise 
and Delage 2011; Gilleland et al. 2016; Abatan et al. 
2018; McGraw and Barnes 2018).

Convective transition statistics. Figure 1b shows an 
example of PODs for the transition between nonpre-
cipitating and precipitating regimes for the tropics, 
where deep convection dominates precipitation 
production. A basic set of diagnostics is shown for 
precipitation dependence on measures of the water 
vapor–temperature environment, evaluated at short 
time scales comparable to those at which param-
eterized convection acts (Neelin et al. 2009; Schiro 
et al. 2016). Observations (Kuo et al. 2018) and an 
example model (GFDL) are shown with, left to right, 
panels for precipitation conditionally averaged as a 
function of column water vapor (CWV) for various 
values of troposphere-average temperature (colors), 
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probability of precipitation (exceeding a threshold of 
0.25 mm h−1), and the probability density function 
(PDF) of CWV and of CWV for precipitating points. 
The sharp pickup of precipitation and probability 
of precipitation above a threshold in CWV for each 
temperature provides a measure of conditional 
instability, as it occurs in each model. In an advanced-
diagnostics module of this POD, the location of the 
sharp pickup is identified and compared to observa-
tions for each model, and the different temperatures 
are collapsed onto a dependence that is very similar 
in observations for the pickup in conditional-average 
precipitation, probability of precipitation, and PDF 
of water vapor for precipitating points. The GFDL 
model provides an example that reproduces these 
observational measures fairly well—other models can 
exhibit considerable spread. Model representations of 
entrainment can be a significant factor in correctly 
obtaining the water vapor–temperature dependence 
of the transition, although microphysics and other 
aspects of the convective parameterization can also 
play a role (Holloway and Neelin 2009; Sahany et al. 
2012, 2014; Kuo et al. 2017; Schiro et al. 2018).

MJO teleconnection biases. Henderson et al. (2017) 
documented reasons for MJO midlatitude telecon-
nection errors in CMIP5 models. Since MJO telecon-
nections have significant impacts on atmospheric 
rivers, blocking, and other extreme events in the 
midlatitudes, teleconnection errors in models have 
important implications for the subseasonal prediction 

of midlatitude weather extremes (e.g., Henderson 
et al. 2016; Mundhenk et al. 2018; Baggett et al. 2017). 
Henderson et al. (2017) developed diagnostics linking 
teleconnection biases to biases in the position and 
extent of the North Pacific jet.

Figure 2 (from Henderson et al. 2017) contains two 
panels, each having MJO teleconnection performance 
during December–February on the y axis. In Fig. 2a, 
the x axis represents an MJO skill metric. While 
Fig. 2a shows a relationship between MJO skill and 
teleconnection performance, even models with a good 
MJO can have poor teleconnection performance. 
For only the models assessed to have a sufficiently 
good MJO, Fig. 2b assesses the relationship between 
teleconnection performance and biases in the North 
Pacific zonal flow. Plus signs are a measure of the total 
root-mean-square (RMS) error of the 250-hPa zonal 
flow over the region 15°–60°N, 110°E–120°W, and the 
filled circle provides a measure of the RMS error in 
the length of the North Pacific subtropical jet. Both 
measures are correlated with MJO teleconnection 
performance, although biases in the jet provides a 
somewhat better metric (r  = −0.7 versus −0.6 for the 
total RMS). Subsequent analysis showed that models 
with a jet that extends too far east tend to have de-
graded teleconnection performance. Model physics 
appears to play a key role in the extent of the Pacific 
jet, as was demonstrated by Neelin et al. (2013) in 
diagnosing projected California precipitation changes 
between CMIP3 and CMIP5 models into the late 
twenty-first century.

Fig. 1. Schematic of MDTF PODs framework (mdtf.py). (a) Workflow under the API. The model output is that 
of a candidate version that the development team wants to compare to observations under the various diag-
nostics. The observations for each POD are supplied in analyzed form within the module. (b) Example web 
page (edited for brevity and clarity) for one POD, described in the “Convective transition statistics” subsection.
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MJO propagation and amplitude diagnostics. A POD for 
MJO propagation is motivated by findings that the hori-
zontal advection of lower-tropospheric moisture plays a 
critical role in eastward propagation of the winter MJO 
(e.g., Maloney 2009; Kiranmayi and Maloney 2011; 
Sobel et al. 2014; Chikira 2014; Kim et al. 2014b; Adames 
and Wallace 2015; Jiang 2017; Kim et al. 2017, Jiang 
et al. 2018). Under this process, the spatial distribution 
of the winter mean lower-tropospheric moisture over 
the equatorial Indo-Pacific region (Fig. 3a) is critically 
important for moistening (drying) to the east (west) of 
MJO convection through advection by MJO anomalous 
winds. The critical role of the mean lower-tropospheric 
moisture pattern for MJO eastward propagation is 
supported based on multimodel simulations from the 
MJO Task Force/GEWEX Global Atmospheric System 
Studies (GASS) MJO model comparison project (Jiang 
2017; Gonzalez and Jiang 2017). In particular, model 
skill in representing the 900–650-hPa mean moisture 
pattern over the Maritime Continent region (red rect-
angle in Fig. 3a) exhibits a high correlation (about 0.8) 
with MJO eastward propagation skill across about 25 
GCM simulations (Fig. 3b).

The convective moisture adjustment time scale 
τ, defined by the ratio of intraseasonal perturba-
tions of precipitable water and surface precipitation 
(e.g., Bretherton et al. 2004; Peters and Neelin 2006; 
Sobel and Maloney 2013), is selected as a metric for 
model MJO amplitude, which is motivated by the high 
anticorrelation (–0.72) between τ and MJO amplitude 
across multimodel simulations in Jiang et al. (2016, 
Fig. 3c). Parameter τ depicts how rapidly precipitation 
must occur to remove excess column water vapor, 
or alternately the efficiency of surface precipitation 
generation per unit column water vapor anomaly, and 
is highly relevant to the convective onset diagnostics 
described above.

AMOC structure diagnostic. The AMOC, with large 
temperature (T) and salinity (S) differences between 
the northward-flowing upper limb and southward-
flowing lower limbs, is responsible for large oceanic 
transport of heat and freshwater, thus playing a 
fundamental role in establishing the mean state 
and the variability of the climate system. The focus 
on diagnosing AMOC in climate models has been 

Fig. 2. From Henderson et al. (2017). December–February teleconnection performance averaged 
across all MJO phases (y axis) vs (a) MJO skill (MJO E/W ratio) and (b) the RMS error of the 250-hPa 
December–February zonal wind. The observed East/West (E/W) precipitation (GPCP) ratio is pro-
vided (dashed line, left panel). The MJO skill is derived as the ratio of eastward to westward power of 
equatorial precipitation in the 30–60-day, zonal wavenumber-1–3 band (e.g., Ahn et al. 2017). Tele-
connection performance was determined as pattern correlation of North Pacific and North America 
(15°S–80°N, 130°E–60°W) MJO composite 250-hPa geopotential height anomalies between CMIP 
models and ERA-Interim averaged over all MJO phases. In (b), the crosses show the model 250-hPa 
zonal wind RMS error over the full Pacific basin, while the closed circles indicate the longitudinal RMS 
error of the subtropical jet. See the text and Henderson et al. (2017) for more detailed explanations.
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mostly on the magnitude or the volume transport of 
the circulation (e.g., Cheng et al. 2013; Collins et al. 
2013) and the role of water properties has been less 
quantified. In an AMOC structure POD, we exam-
ine the water properties of the AMOC by projecting 
the meridional transport on T–S space, then use the 
transport-weighted T and S as the characteristic T 
and S of the upper and lower limbs. The results show 
that the modeled AMOC in CMIP5 historical simula-
tions has a smaller temperature difference between 
the upper and lower limbs compared to the results 
of a high-resolution ocean simulation that well rep-
resents the observed AMOC structure and the heat/
freshwater transports (Xu et al. 2016). The model 
spread of time-mean heat transport among different 
CMIP5 simulations is significantly correlated with 

the volume transport/magnitude of the AMOC, not 
with the temperature difference between the upper 
and lower limbs (Figs. 4a,b). The smaller temperature 
difference, however, is the main reason for a weaker 
multimodel mean heat transport in CMIP5 models 
(Fig. 4b). However, the averaged freshwater transport 
in CMIP5 models is similar to high-resolution simu-
lation and observations, and the spread of freshwater 
transports in different CMIP5 models is significantly 
correlated with the salinity difference between the 
upper and lower AMOC limbs (Figs. 4c,d).

ENSO-precipitation diagnostics along the equatorial 
Pacific. Sustained research in theory, numerical mod-
eling and observations has demonstrated that SST 
anomalies associated with ENSO serve as the leading 

Fig. 3. (a) Winter (November–April) mean 650–900-hPa specific humidity based on ERA-Interim. (b) 
Scatterplot of model skill for eastward propagation of the MJO vs model skill of the mean 650–900-hPa 
moisture pattern over the Maritime Continent [red rectangle in (a)] based on multimodel simulations 
from the MJO Task Force/GASS project. Model MJO propagation skill is defined by the pattern cor-
relation of Hovmöller diagrams of model simulated rainfall anomalies associated with the MJO against 
its observed counterpart following Jiang et al. (2015). Red (blue) dots denote good (poor) MJO models. 
(c) Scatterplot of MJO amplitude and model convective moisture adjustment time scale in models 
(black dots) and observations (red dots). The MJO amplitude in each model is defined by the standard 
deviation of 20–100-day bandpass-filtered rainfall over the Indian Ocean (10°S–10°N, 75°–85°E) during 
winter. Convective time scale in a model is defined by the ratio of precipitable water (W) anomaly 
to precipitation (P) anomaly associated with the MJO and derived by a regression approach. Before 
conducting the regression, both W and P anomalies are subject to 20–100-day filtering and averaged 
over the Indian Ocean (10°S–10°N, 75°–85°E) region. Adapted from Jiang et al. (2016) and Gonzalez 
and Jiang (2017).
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source of predictability of seasonal to interannual 
climate anomalies over North America (Hoskins and 
Karoly 1981; Horel and Wallace 1981) and the U.S. 
Affiliated Pacific Islands (USAPI; Annamalai et al. 
2014). Recognizing that equatorial Pacific precipita-
tion and associated diabatic heating anomalies are 
fundamental to this framework, and that in regions 
of weak horizontal temperature gradients such as 
the tropical oceans, moist static energy (MSE) varia-
tions are primarily due to moisture variations and 
have a close association with precipitation (Neelin 
and Held 1987; Bretherton et al. 2006), we developed 
a POD based on vertically integrated MSE budget. 
The POD identifies leading model processes that 
are important in translating ENSO-related SST 
anomalies into precipitation anomalies. Further, to 
identify and quantify compensating errors in model 
processes, MSE variance analysis (Wing and Emanuel 
2014) is also included in the POD. With a focus on 

ENSO winters, this POD is applied to CMIP5 models’ 
historical simulations and reanalysis products, and 
metrics are developed to assess models’ fidelity in 
representing processes. Apart from identifying sys-
tematic errors across models (e.g., Fig. 5), the POD 
identifies compensating errors in individual models, 
and assesses progress in generations of models from 
the same center (Annamalai 2019, manuscript sub-
mitted to J. Climate).

Figure 5 shows scatterplots between simulated 
anomalous precipitation and net radiative f lux 
divergence into the column Frad for composites of 
El Niño winters over the equatorial central (Fig. 5a) 
and eastern (Fig. 5b) Pacific Ocean, respectively. The 
strong intermodel correlations in these plots suggest 
that systematic biases in precipitation are similarly 
tied to biases in Frad. Annamalai (2019, manuscript 
submitted to J. Climate) note that both during El Niño 
and La Niña winters, Frad, particularly the bias in net 

Fig. 4. Relation of the modeled oceanic heat transport with (a) volume transport and (b) temperature differ-
ence (between the upper and lower AMOC limbs) at 26°N. Relation of the modeled freshwater transport with 
(c) volume transport and (d) salinity differences. Colored symbols and the black circle denote results from 20 
CMIP5 historical simulations and their average, respectively; black dot denotes high-resolution ocean simula-
tion results that represent well the observed mean heat and freshwater transports and the AMOC structure 
at 26°N (Xu et al. 2016).
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longwave (LW) component, dominates the system-
atic bias in the MSE budget across all models. Here, 
higher Frad values indicate stronger cloud–radiative 
feedbacks that relate to perturbation of the radiative 
energy budget by condensate produced by convec-
tion (Stephens et al. 2008). Furthermore, systematic 
biases in Frad are strongly linked to simulated free-
troposphere moisture anomalies that in turn are 
strongly linked to precipitation biases (not shown).

Warm rain processes. Combined analysis of mul-
tiple satellite measurements from CloudSat and the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS) has provided new insights into the warm 
rain process, a key process that governs the low-cloud 
radiative properties and is a major pathway through 
which aerosols influence clouds. Suzuki et al. (2010) 
proposed a methodology for combining the radar 
reflectivity profile from CloudSat (Marchand et al. 
2008) and the cloud properties (optical thickness 
and effective radius) from MODIS (Platnick et al. 
2003; Nakajima et al. 2010) to probe how the warm 
rain process occurs within clouds. The methodol-
ogy composites the radar reflectivity profiles in the 
form of the probability density function normalized 
at each in-cloud optical depth, which is determined 
by vertically slicing the cloud optical thickness 
according to the adiabatic profile assumption. The 
statistics thus constructed, referred to as contoured 
frequency by optical depth diagram (CFODD), are 

further classified according to ranges of cloud-top 
particle size (Fig. 6, top panels), which is another 
observable from MODIS, to reveal how the verti-
cal microphysical structure of warm-topped clouds 
tends to transition from a nonprecipitating regime 
(Fig. 6a) to a precipitating regime (Fig. 6c) as a fairly 
monotonic function of the particle size. The statistics 
provide a direct insight into the coalescence process.

The methodology has been applied to output from 
multiple global models (Suzuki et al. 2015; Jing et al. 
2017) to construct the statistics corresponding to 
those from satellite observations. The statistics are 
then compared to evaluate how the models represent 
the warm rain formation process against satellite 
observations. Examples for such a comparison with 
state-of-the-art global models are shown in Fig. 6 
(middle and bottom panels) that indicate the models 
tend to produce rain too efficiently even when the 
cloud-top particle size is small. The behavior of the 
model biases identified in these statistics is further 
traced to formulations of model cloud microphys-
ics, particularly the autoconversion process (Suzuki 
et al. 2015), implying that the CFODD statistics could 
serve as a clue to constrain a key uncertainty in cloud 
microphysics parameterization with satellite observa-
tions. This bottom-up constraint on model physics, 
however, tends to produce an overly negative forcing 
due to the aerosol indirect effect, which contradicts 
the top-down requirement for models to reproduce 
the historical temperature trend (Suzuki et al. 2013), 

Fig. 5. Scatterplots between CMIP5 models simulated precipitation vs net radiative flux divergence Frad: 
(a) equatorial central Pacific (10°S–5°N, 160°E–160°W) and (b) eastern Pacific (5°S–5°N, 160°–80°W). 
Results are for El Niño winter composites. In each panel, intermodel correlations and best-fit regres-
sions are also provided.
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implying the presence of error compensation at a 
fundamental level.

Tropical cyclones. The tropical cyclone (TC) POD 
contains a set of diagnostic codes that facilitate 
examination of TCs in global model simulations. 
When supplied with storm information (e.g., center 
position and intensity), this module computes 
azimuthal averages of dynamic and thermodynamic 
fields around the storm center that are helpful in 
identifying physical processes that lead to intermodel 

differences in simulated TCs. Figure 7 shows an 
example output from this POD. The top two rows 
show radius–pressure plots of tangential and radial 
velocity, and relative humidity and pressure velocity, 
while the bottom row shows rainfall rates. The com-
posite structures of TCs from four different GCM 
simulations show cyclonic tangential winds and 
typical secondary circulations that are made of low-
level radial inflow toward the center, rising motions 
around the center, and upper-level radial outf low 
away from the center. The TC POD was used by Kim 

Fig. 6. The PDF (color shading; % dBZ–1) of radar reflectivity (abscissa) normalized as a function of cloud 
optical depth increasing downward (ordinate), which is further classified according to different ranges 
of cloud-top particle sizes for (left) 5–10, (center) 10–15, and (right) 15–20 mm obtained from (a)–(c) 
A-Train satellite observations, (d)–(f) GFDL AM4, and (g)–(i) Model for Interdisciplinary Research on 
Climate, version 5 (MIROC5; adapted from Jing et al. 2017).
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et al. (2018) to examine why the High Resolution 
Atmospheric Model (HiRAM) simulation produces 
stronger TCs than the GFDL Atmosphere Model 
2.5 (AM2.5) and Forecast-Oriented Low Resolution 
Ocean (FLOR) simulations. A key finding in the 
study was that at comparable intensity, the HiRAM 
model produces a greater amount of precipitation 
near the TC center than the other models (cf. the left 
two panels in the bottom row of Fig. 7). The greater 
amount of diabatic heating associated with more 
rainfall in the TC inner-core region in the HiRAM 
model favors intensification (e.g., Schubert and Hack 
1982; Nolan et al. 2007). Moon et al. (2019, manu-
script submitted to J. Climate) applied the TC POD 
to further examine intermodel spread among eight 
different global model simulations with different 
resolutions and physics.

In the second set of TC PODs, a framework based 
on the column-integrated MSE variance budget, which 
was originally developed to study convective organiza-
tion in cloud-resolving model simulations (Wing and 
Emanuel 2014), has been adapted for climate model 

simulations of TCs. This POD focuses on the relative 
role of feedback processes associated with tropical cy-
clogenesis by computing the product of MSE anoma-
lies from the mean of a 10° box surrounding a TC and 
anomalous sources and sinks of MSE. Figure 8 shows 
an example of this POD, for the same GCM simula-
tions and composites as used in Fig. 7. The first row 
shows the squared MSE anomalies, and the bottom 
two rows show two of the terms in the MSE variance 
budget—the radiative and surface f lux feedbacks. 
While the feedbacks are generally positive and thus 
act to amplify MSE anomalies and favor development 
of the TC, they tend to be stronger in the models with 
more intense TCs. This strength disparity indicates 
that the representation of the interaction of spatially 
varying radiative cooling and surface fluxes with the 
developing TC is partially responsible for intermodel 
spread in TC simulation. Wing et al. (2019) applied 
this POD to six different global model simulations.

Soil moisture control on evapotranspiration. Soil 
moisture–atmosphere interactions are a key factor 

Fig. 7. (top),(middle) Azimuthally averaged radius–pressure plots of (top) tangential velocity (shading) and 
radial velocity (lines) and (middle) relative humidity (shading) and pressure velocity (lines). (bottom) Azimuth-
ally averaged rain rate. All panels show the composites when the simulated tropical cyclones have a similar 
intensity, in this case between 30 and 33 m s–1. Positive (negative) values are plotted in red (blue) contour lines. 
Four different GCM simulations [GFDL AM2.5 and High Resolution Atmospheric Model (HiRAM) models at 
0.5° resolution and NCAR Community Atmosphere Model version 5–Finite Volume (CAM5-FV) and CAM5-
Spectral Element (CAM-SE) models at 0.25° resolution] are used.
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modulating surface climate over land. Soil mois-
ture variations are forced by the atmosphere; in 
turn, they regulate surface water and energy fluxes 
[e.g., evapotranspiration (ET)], and thus feedback 
onto near-surface surface climate (e.g., Seneviratne 
et al. 2010). One of the PODs focuses on the so-
called “terrestrial leg” of this coupling, that is, the 
dependence of ET on soil moisture. Models exhibit 
significant uncertainties in the representation of this 
relationship (Guo et al. 2006; Dirmeyer et al. 2006; 
Berg and Sheffield 2018), which strongly influences 
summertime warming projections.

The hydrological and radiative controls on ET 
were assessed with a first-order diagnosis consisting 
of the correlations at the interannual time scale 
between summertime-mean values of surface (top 
10 cm) soil moisture (SM) and incoming solar radia-
tion (Rsds), respectively, with ET (Berg and Sheffield 
2018). Regions of positive SM–ET correlations in 

Fig. 9 indicate soil moisture–limited regions, where 
soil moisture variability controls ET variability—
generally in drier summer midlatitude regions. The 
value of the correlation indicates how strongly SM 
controls ET. Conversely, negative values indicate that 
ET variations drive variations in soil moisture levels: 
this occurs in the tropics and high latitudes, where 
available soil moisture is sufficient and the limiting 
factor for ET becomes atmospheric evaporative 
demand. This is consistent with the positive Rsds–ET 
correlations in the same regions.

Figure 9 shows that the CMIP5 multimodel mean 
qualitatively reproduces the climatological pattern 
from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) interim reanalysis 
(ERA-Interim). However, large uncertainties exist 
between models in the detailed spatial pattern and 
amplitude of the soil moisture control on ET. Overall, 
model uncertainty in SM–ET coupling tends to be 

Fig. 8. (top) Squared anomalies of column-integrated MSE (J2 m–4), where anomalies are from the mean of 
a 10° × 10° box surrounding a TC. (middle) Radiative and (bottom) surface flux feedback terms in the MSE 
variance budget, plotted as a function of latitude and longitude relative to the TC center. All panels show the 
composites when the simulated tropical cyclones have a similar intensity, in this case between 30 and 33 m s–1. 
Four different GCM simulations are shown: (d),(h),(l) GFDL AM2.5 and (a),(e),(i) HiRAM models at 0.5° resolu-
tion and NCAR (c),(g),(k) CAM5-FV and (b),(f),(j) CAM5-SE models at 0.25° resolution.
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greatest on the outer margins of regions of positive 
coupling, extending into regions of energy-limited 
ET. The complementarity across space between hy-
drological and radiative controls on ET extends across 
models: models that are less soil moisture limited are 
more radiation limited, and vice versa (not shown). 
In regions of greatest model spread, up to half of the 
intermodel variance in SM–ET coupling is explained 
by model differences in model precipitation; the re-
maining spread may be related to further differences 
in rainfall characteristics such as intraseasonal dis-
tribution, but differences are also likely to stem from 
differences in model treatment of land hydrology, 
including differences in the simulation of vegetation 
and the representation of soil water stress.

Midlatitude cyclones, fronts, and storm tracks. One 
focus of the task force was extratropical cyclones, 
which generate precipitation, winds, and clouds 
in the midlatitudes. GCMs need to capture the 
dynamics and thermodynamic properties of both 
the individual cyclone events and their accumulated 
behavior. Eulerian storm-track analysis revealed that 
model sea surface temperature biases impact the 
surface storm tracks and precipitation near ocean 
western boundary currents (Booth et al. 2017; Small 
et al. 2019). Targeted analyses of features in cyclones 

and/or their fronts were carried out using Lagrangian 
tracking algorithms and compositing. These metrics 
facilitated process-oriented analyses of satellite 
observations of clouds that lead to 1) explanations 
for relationships between stability and cloud cover 
(Naud et al. 2016), and 2) pin-pointing the synoptic 
locations and conditions where biases in GCM clouds 
occur (Fig. 10). Task force efforts on cyclone-centered 
precipitation led to 1) a satellite-based benchmarks 
(Naud et al. 2019), and 2) results showing GCMs rep-
resent cyclone total precipitation as well as reanalysis, 
but the models have markedly different levels of con-
tributions from their convection parameterizations 
(Booth et al. 2018). The Lagrangian metrics require 
6-hourly, three-dimensional data, some of which are 
not standard in the CMIP archive.

Diurnal cycle as a test bed. Diurnal variations are large 
in near-surface temperature, pressure, winds, energy 
fluxes, precipitation, and other fields, especially over 
land during the warm season. These variations are 
linked to many land surface and atmospheric pro-
cesses; therefore, they can be used as a test bed for di-
agnosing and evaluating weather and climate models 
(Dai and Trenberth 2004). One POD is the diurnal 
cycle in surface temperature and related fields. 
Analyses of surface air temperature in the GFDL AM4 

Fig. 9. (top) Correlation between summertime-mean surface SM and ET (left) in ERA-Interim, (center) in 
CMIP5 models, and (right) the standard deviation across CMIP5 models. (bottom) As in the top row, but for 
the correlation between ET and Rsds. Summertime is defined as June–August in the Northern Hemisphere 
and December–February in the Southern Hemisphere. Correlations are over 1979–2014 for ERA-Interim and 
1950–2005 for CMIP5 models, using outputs from the historical simulations. SM and ET outputs were available 
for 37 models, and for 43 models for Rsds and ET.
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(Zhao et al. 2018a,b) revealed some systematic biases 
in the daily minimum (Tmin) and maximum (Tmax) 
air temperature, despite the relatively small biases 
in the daily mean (Tmean) temperature over many 
land areas (Lu 2018). For example, Tmax in the AM4 
showed a cold bias of 1°–4°C over most land areas 
during all seasons, while Tmin in the AM4 showed 
small to slight warm biases when compared with sta-
tion observations, resulting in greatly reduced diurnal 
temperature range (DTR) in the model (Lu 2018).

Analyses of surface energy f luxes (Lu 2018) re-
vealed many biases, including higher surface albedo, 
higher downward shortwave radiation, and weaker 
surface winds than ERA-Interim (Dee et al. 2011). 

However, large uncertainties in existing surface en-
ergy flux data made it difficult to precisely quantify 
the model biases in these fields. Furthermore, the 
inconsistent definitions of 2-m air temperature in 
the model and in observations further complicated 
the evaluation because the Tmin, Tmax, and DTR 
vary with the height of the measurement above the 
ground (Fig. 11). In the AM4, the reference for the 2-m 
air temperature is close to the displacement height 
(rather than the ground, which is the reference for the 
2-m air temperature from weather stations), which is 
about two-thirds of the canopy height (a function of 
vegetation types). Thus, the 2-m air temperature from 
the AM4 is likely at a higher level than the 2-m air 

Fig. 10. Composites of (top) cloud fraction for cyclone-centered map view and (bottom) 
cold-front-centered transects. Observational data: (a) MODIS Aqua and (c) CloudSat–
Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). Model data: 
GFDL pre-CMIP6 model that uses a two-plume convection scheme (i.e., 1400 local time). 
Composites are generated using cyclones or fronts from 5 years of observations or model 
data, within the 30°–60° latitude band in both hemispheres. The plus sign in the top row 
represents the center of the cyclones. The region between the black dashed lines in the top 
row is the approximate location for transects used in frontal analysis. The black dashed line 
in the bottom row indicates location of the cold front based on 850-hPa potential tempera-
ture and wind gradient data [see Naud et al. (2014) and Naud et al. (2016) for compositing 
methodology details].
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temperature from station measurements, especially 
over forests. Since Tmax decreases with height (due 
to solar heating on the ground) while Tmin increases 
with height (due to radiative cooling of the ground; 
Fig. 11), the higher reference in the AM4 could con-
tribute to and help partially explain the systematic 
cold bias in Tmax and the warm bias in Tmin, as 
well as the smaller DTR in AM4. However, the dif-
ference between the model and station temperatures 
is larger than that between the observed 2- and 9-m 
temperatures at many of the stations shown in Fig. 
11, suggesting that other factors besides the higher 
reference height likely played a role.

THE NOAA MDTF PROCESS-ORIENTED 
DIAGNOSTICS FRAMEWORK. As alluded to 
above, a product of the NOAA MAPP MDTF is an 

evolving software framework to aid application of 
the PODs described above to the model development 
process. Extensive documentation of the current state 
of the framework including a developer’s guide, a 
“getting started” guide, standardized POD-specific 
documentation, sample .html output, and the code 
itself is available at www.cesm.ucar.edu/working 
_groups/Atmosphere/mdtf-diagnostics-package/. 
The framework has been developed as a Python 
code that integrates modules with PODs provided by 
contributing teams. While the Python framework is 
useful for modeling centers, it is important to empha-
size that it is primarily a vehicle to facilitate adoption 
of the intellectual content—a center with its own 
diagnostics framework could easily adapt any part 
into its own interface and workflow. The PODs them-
selves follow an applications programming interface 

Fig. 11. The observed mean diurnal cycle of surface air temperatures at 2 (green) and 9 m (blue) above the 
ground during July of 2016 and 2017 at 12 New York Mesonet stations, compared with the GFDL AM4 model–
simulated multiyear mean 2-m air temperature (red) for the grid box containing the station. The daily mean 
value is shown in the line legend. The 2-m height in the AM4 is 2 m above a reference height, which is close 
to the displacement height (~2/3 of the canopy height) in the AM4, rather than 2 m above the ground as for 
weather stations.
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(API) that specifies how the modules interact with 
the output from the candidate model version that is 
being diagnosed. We stress that the API developed 
here differs from packages like Grid Analysis and 
Display System (GrADS) or Giovanni that provide 
general tools that can be used for a broad set of 
visualization, data analysis, or data manipulation 
tasks. Rather, the functionality of this API provides 
a vehicle for organizing specific PODs that have been 
contributed by developers into a consistent package 
that runs on Climate and Forecast (CF) formatted 
model output or raw model output with extensions, 
and is designed to be used by modeling centers in 
their development workflows. This API also differs 
from those like Model Evaluation Tools (MET) at 
NCAR that provide a general set of tools for model 
verification (https://ral.ucar.edu/solutions/products 
/model-evaluation-tools-met), although it is being 
designed to be flexible enough to conceivably inter-
face with such packages in the future.

Figure 1a illustrates both the Python framework 
and the API. Key features include the following:

•	 A Python script sets up paths, variable names, etc. 
for the model data to be analyzed. It calls PODs 
contributed by various groups; these yield plots, 
and each group provides the observational com-
parison for its own POD.

•	 The output plots are then composed into a web 
page, with subpages that permit easy comparison 
of the candidate model and observations.

•	 The PODs must be open source, but need not be 
based on Python; they just need to be callable 
from Python (e.g., POD2.ncl in the schematic are 
entrained in the framework using a simple Python 
wrapper).

•	 PODs are repeatable in modeling center workflow, 
and focused on model improvement. Any group 
can test a POD to submit, contributing to the 
library of POD.

•	 The PODs are independent, so that one can be 
added without reference to any other, making the 
MDTF framework extensible and amenable to 
parallel development.

As described above, Fig. 1b shows an edited 
example of a web page from a particular POD, 
illustrating how the comparison appears between 
observations and the model output analyzed by the 
POD. The details of the format vary according to the 
POD, but each provides the developer with model-to-
observation comparison for a process of interest. The 
diagnostic set also provides a work set of examples 

addressing different processes, each with their unique 
requirements and approach.

It is also important to acknowledge that not all 
PODs fit conveniently into the Python framework. 
Some require specialized output or large datasets that 
would not routinely be provided, or must interact 
with other software at the center, such as cyclone 
tracking routines. Such PODs will be provided sepa-
rately, or in preprocessed form, with instructions for 
adoption. Nonetheless these diagnostics form part of 
the same intellectual framework. An updated status of 
PODs implemented into the framework can be found 
at the web link above.

SUMMARY AND PATH FORWARD. This 
article described the outcomes of the NOAA MAPP 
MDTF activities to promote development of PODs 
and their application to climate and weather predic-
tion models. These activities include development 
of an open-source framework that is portable, com-
munity extensible, and usable to aid application of 
PODs to the model development process. Moving 
forward, a renewed MDTF that began its term in the 
fall of 2018 plans expansion, refinement, and steps 
to increase the diagnostic utility of the framework. 
Development and entrainment of additional PODs 
will be an ongoing activity. For example, there is a 
need for standardized basin-scale heat uptake and 
sea level change PODs. PODs for feedback mecha-
nisms in regional hydroclimate extremes including 
cloud feedbacks will be developed, complemented by 
parameter-perturbation experiments with models. 
Diagnostics will be brought into the framework for 
processes affecting temperature and precipitation 
distribution tails, including advanced convective and 
moist-static energy diagnostics. Collaborations will 
continue with GFDL and NCAR model development 
teams and an expanded number of other centers to 
refine PODs to increase their range and usability for 
model development teams. A particular interest is 
expanding the POD suite for use with weather fore-
casting models, which is conceptually attractive given 
common physical roots of climate and forecasting 
models and the shared imperative to reduce biases 
in both types of models.

The MDTF plans to develop protocols to optimize 
application of the diagnostic framework to CMIP6 
model simulations. The API already uses standard CF 
model formats and variable names used for CMIP6 
output, thus the package will read CMIP6 output. 
Further development includes developing tools to as-
sist modelers in navigating trade-offs among multiple 
observational constraints and expanding functionality 
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to enable ensembles to be examined. The aim is to em-
phasize those aspects where the multimodel ensemble 
provides information about processes that tend to be 
ill constrained, and thus should be targeted for close 
scrutiny against observations (i.e., there must be added 
value beyond simply comparing a development ver-
sion to existing models). Approaches considered will 
range from simply placing the candidate model within 
a multimodel plot of process-oriented metrics to new 
means of assessing parameter perturbation experi-
ments systematically against observations.

Given the numerous community efforts related to 
process-oriented model diagnosis described above, 
greater coordination among these efforts would 
provide efficiencies, optimize science and techni-
cal approaches, and foster the greatest benefit to 
the climate and modeling communities. To further 
this goal, the MDTF has been proactive in forging 
connections to other efforts, for example fostering 
stronger links to PCMDI to leverage community 
data standards and enhance coordination of metrics 
and diagnostics development across agencies. The 
project will provide complementary process diagnosis 
to PCMDI capabilities that are expected to provide 
routine performance evaluation of all CMIP6 Diag-
nostic, Evaluation and Characterization of Klima 
(DECK) and Historical simulations. As MAPP PODs 
crystalize via experience at GFDL and NCAR, it is 
expected that some will be entrained into the broader 
community-based efforts, including possible collabo-
rations with other modeling groups contributing to 
CMIP. Hence, the NOAA MDTF effort will benefit 
from experience such as PCMDI’s working with the 
broader modeling community, and in particular its 
support of the developing standards and protocols.
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