5,459 research outputs found

    The role of a pressure-dependent rheology in the dynamics of mantle circulation

    Get PDF
    A thermomechanical model for upper mantle convection was constructed such that the thickness and the structure of the lithosphere are determined self consistently by the heat transported by convection. In this study of the interaction between the lithosphere and upper mantle, strongly temperature and pressure dependent rheologies for both Newtonian and non-Newtonian creep mechanisms are employed. For a strictly temperature dependent rheology an insignificant amount of heat, less than 12.5 mW/sq m, can be transported convectively for an interior viscosity, 0(10 sup 21 Pas), compatible with post glacial rebound. On the other hand, for similar values of the interior viscosity, steady heat fluxes between 20 and 40 mW/sq m are produced by introducing pressure dependence into the rheology. For the temperature and pressure dependent flow law the horizontally averaged interior temperature displays very little variation with the amount of heat evacuated, once all of the rheological parameters are fixed. This finding may have important ramifications for parameterized convection

    Heuristic bidding strategies for multiple heterogeneous auctions

    No full text
    This paper investigates utility maximising bidding heuristics for agents that participate in multiple heterogeneous auctions, in which the auction format and the starting and closing times can be different. Our strategy allows an agent to procure one or more items and to participate in any number of auctions. For this case, forming an optimal bidding strategy by global utility maximisation is computationally intractable, and so we develop two-stage heuristics that first provide reasonable bidding thresholds with simple strategies before deciding which auctions to participate in. The proposed approach leads to an average gain of at least 24% in agent utility over commonly used benchmarks

    Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    Get PDF
    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins

    Quantum Bit Commitment with a Composite Evidence

    Full text link
    Entanglement-based attacks, which are subtle and powerful, are usually believed to render quantum bit commitment insecure. We point out that the no-go argument leading to this view implicitly assumes the evidence-of-commitment to be a monolithic quantum system. We argue that more general evidence structures, allowing for a composite, hybrid (classical-quantum) evidence, conduce to improved security. In particular, we present and prove the security of the following protocol: Bob sends Alice an anonymous state. She inscribes her commitment bb by measuring part of it in the + (for b=0b = 0) or ×\times (for b=1b=1) basis. She then communicates to him the (classical) measurement outcome RxR_x and the part-measured anonymous state interpolated into other, randomly prepared qubits as her evidence-of-commitment.Comment: 6 pages, minor changes, journal reference adde

    Oceanic lithosphere and asthenosphere: The thermal and mechanical structure

    Get PDF
    A coupled thermal and mechanical solid state model of the oceanic lithosphere and asthenosphere is presented. The model includes vertical conduction of heat with a temperature dependent thermal conductivity, horizontal and vertical advection of heat, viscous dissipation or shear heating, and linear or nonlinear deformation mechanisms with temperature and pressure dependent constitutive relations between shear stress and strain rate. A constant horizontal velocity u sub 0 and temperature t sub 0 at the surface and zero horizontal velocity and constant temperature t sub infinity at great depth are required. In addition to numerical values of the thermal and mechanical properties of the medium, only the values of u sub 0, t sub 0 and t sub infinity are specified. The model determines the depth and age dependent temperature horizontal and vertical velocity, and viscosity structures of the lithosphere and asthenosphere. In particular, ocean floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of the age of the ocean floor

    Determination of quantum-noise parameters of realistic cavities

    Get PDF
    A procedure is developed which allows one to measure all the parameters occurring in a complete model [A.A. Semenov et al., Phys. Rev. A 74, 033803 (2006); quant-ph/0603043] of realistic leaky cavities with unwanted noise. The method is based on the reflection of properly chosen test pulses by the cavity.Comment: 5 pages, 2 figure

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Assessment of open thermodynamic system concepts for fluviokarst temperature calculations – an example, the Cent-Fonts resurgence (Hérault, France)

    No full text
    We propose to assess the error done when temperature is considered as a conservative tracer in fluviokarst studies. As a matter of fact, heat exchanges occur between karstic Conduit System (CS) and Porous Fractured Matrix (PFM) that prevents from using this approximation without caution. The conservative tracer approximation boils down to consider the cooling of CS water by PFM flow in an open thermodynamic system where the CS is bounded by an Adiabatic Wall (AW). The resulting CS water temperature contrasts with the one obtained from more complete models (CW), which also take into account heat conduction within the CS, within the PFM, and from the CS to PFM through CS a Conductive Wall. In order to assess first orders of this error, the dimensionless equations, characteristic of CS cooling by PFM, have been solved thanks to Alternate Finite Difference Implicit methods both in AW and CW configurations. Four groups of dimensionless numbers appear in the various terms of energy and mass equations among which the Peclet and Reynolds numbers depict the large morphologic and hydrologic variability of natural karstic systems. A parametric exploration of the differences between AW and CW models has then been conducted vs. Peclet numbers (Pe numbers varying from 106 to 109, at constant CS Reynolds number) and vs. Reynolds numbers (Red varying from 103 to 107, at constant Peclet number). The error curves bound finite volumes in the Peclet–Reynolds space that converge uniformly to zero for the extreme values of these parameters. However, for Peclet and Reynolds numbers characteristic of realistic fluviokarst configurations, the errors reach finite values, that give first order information assessing the error done by considering temperatures as conservative tracers. Maximum relative errors around 10−2 (in fact 0.0092) have been found varying Pe; while it remained slightly lower than 0.7 × 10−2 varying Red. An illustrative example of the temperature conservative tracer AW approximation is presented with the data obtained from the main morphologic and hydrologic properties of the Cent–Font resurgence (Hérault, France). According to the results, the error reached at the output of the fluviokarst is 0.00613 (for Pe = 1.4993 × 108 and Red = 4.2969 × 104). When rescaled to the physical domain, this error leads to a temperature difference of 1.77 K between the CW and AW configurations

    Crease Formation in the Processing of Thin Web Material

    Get PDF
    A mathematical model is developed to describe the conditions for buckling of steel strip between transport rolls due to strip camber, together with conditions necessary for the subsequent “ironing-in” of the buckle as it passes over the downstream roll. For a permanent crease to form, the buckle must be sufficiently stable so that it is prohibited by friction to spread laterally, and the stresses from the buckle defect must be large enough for plastic deformation to occur as it travels over the downstream roll. Once the conditions to produce a permanent crease are known they can be avoided in plant operations
    corecore