6,167 research outputs found
Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene
The glass transition temperature and relaxation dynamics of the segmental
motions of thin films of polystyrene labeled with a dye,
4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are
investigated using dielectric measurements. The dielectric relaxation strength
of the DR1-labeled polystyrene is approximately 65 times larger than that of
the unlabeled polystyrene above the glass transition, while there is almost no
difference between them below the glass transition. The glass transition
temperature of the DR1-labeled polystyrene can be determined as a crossover
temperature at which the temperature coefficient of the electric capacitance
changes from the value of the glassy state to that of the liquid state. The
glass transition temperature of the DR1-labeled polystyrene decreases with
decreasing film thickness in a reasonably similar manner to that of the
unlabeled polystyrene thin films. The dielectric relaxation spectrum of the
DR1-labeled polystyrene is also investigated. As thickness decreases, the
-relaxation time becomes smaller and the distribution of the
-relaxation times becomes broader. These results show that thin films
of DR1-labeled polystyrene are a suitable system for investigating confinement
effects of the glass transition dynamics using dielectric relaxation
spectroscopy.Comment: 10 pages, 11 figures, 2 Table
Spacings of Quarkonium Levels with the Same Principal Quantum Number
The spacings between bound-state levels of the Schr\"odinger equation with
the same principal quantum number but orbital angular momenta
differing by unity are found to be nearly equal for a wide range of power
potentials , with . Semiclassical approximations are in accord with this behavior. The
result is applied to estimates of masses for quarkonium levels which have not
yet been observed, including the 2P states and the 1D
states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process
using psfig.sty
A Physiologically Based Model of Orexinergic Stabilization of Sleep and Wake
The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus (VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable predictions, including a role for Orx in chronotype and sleep inertia
The Stokes-Einstein Relation in Supercooled Aqueous Solutions of Glycerol
The diffusion of glycerol molecules decreases with decreasing temperature as
its viscosity increases in a manner simply described by the Stokes-Einstein(SE)
relation. Approaching the glass transition, this relation breaks down as it
does with a number of other pure liquid glass formers. We have measured the
diffusion coefficient for binary mixtures of glycerol and water and find that
the Stokes-Einstein relation is restored with increasing water concentration.
Our comparison with theory suggests that addition of water postpones the
formation of frustration domainsComment: 4 Pages and 3 Figure
Recommended from our members
Human Vault Nanoparticle Targeted Delivery of Antiretroviral Drugs to Inhibit Human Immunodeficiency Virus Type 1 Infection.
"Vaults" are ubiquitously expressed endogenous ribonucleoprotein nanoparticles with potential utility for targeted drug delivery. Here, we show that recombinant human vault nanoparticles are readily engulfed by certain key human peripheral blood mononuclear cells (PBMC), predominately dendritic cells, monocytes/macrophages, and activated T cells. As these cell types are the primary targets for human immunodeficiency virus type 1 (HIV-1) infection, we examined the utility of recombinant human vaults for targeted delivery of antiretroviral drugs. We chemically modified three different antiretroviral drugs, zidovudine, tenofovir, and elvitegravir, for direct conjugation to vaults. Tested in infection assays, drug-conjugated vaults inhibited HIV-1 infection of PBMC with equivalent activity to free drugs, indicating vault delivery and drug release in the cytoplasm of HIV-1-susceptible cells. The ability to deliver functional drugs via vault nanoparticle conjugates suggests their potential utility for targeted drug delivery against HIV-1
Possible retardation effects of quark confinement on the meson spectrum
The reduced Bethe-Salpeter equation with scalar confinement and vector gluon
exchange is applied to quark-antiquark bound states. The so called intrinsic
flaw of Salpeter equation with static scalar confinement is investigated. The
notorious problem of narrow level spacings is found to be remedied by taking
into consideration the retardation effect of scalar confinement. Good fit for
the mass spectrum of both heavy and light quarkomium states is then obtained.Comment: 14 pages in LaTex for
Recognising Desire: A psychosocial approach to understanding education policy implementation and effect
It is argued that in order to understand the ways in which teachers experience their work - including the idiosyncratic ways in which they respond to and implement mandated education policy - it is necessary to take account both of sociological and of psychological issues. The paper draws on original research with practising and beginning teachers, and on theories of social and psychic induction, to illustrate the potential benefits of this bipartisan approach for both teachers and researchers. Recognising the significance of (but somewhat arbitrary distinction between) structure and agency in teachers’ practical and ideological positionings, it is suggested that teachers’ responses to local and central policy changes are governed by a mix of pragmatism, social determinism and often hidden desires. It is the often underacknowledged strength of desire that may tip teachers into accepting and implementing policies with which they are not ideologically comfortable
Mammalian Rest/Activity Patterns Explained by Physiologically Based Modeling
Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological changes required to orchestrate adaptation to various temporal niches
Monitoring the CMS strip tracker readout system
The CMS Silicon Strip Tracker at the LHC comprises a sensitive area of approximately 200 m2 and 10 million readout channels. Its data acquisition system is based around a custom analogue front-end chip. Both the control and the readout of the front-end electronics are performed by off-detector VME boards in the counting room, which digitise the raw event data and perform zero-suppression and formatting. The data acquisition system uses the CMS online software framework to configure, control and monitor the hardware components and steer the data acquisition. The first data analysis is performed online within the official CMS reconstruction framework, which provides many services, such as distributed analysis, access to geometry and conditions data, and a Data Quality Monitoring tool based on the online physics reconstruction. The data acquisition monitoring of the Strip Tracker uses both the data acquisition and the reconstruction software frameworks in order to provide real-time feedback to shifters on the operational state of the detector, archiving for later analysis and possibly trigger automatic recovery actions in case of errors. Here we review the proposed architecture of the monitoring system and we describe its software components, which are already in place, the various monitoring streams available, and our experiences of operating and monitoring a large-scale system
- …
