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Abstract

The orexinergic neurons of the lateral hypothalamus (Orx) are essential for regulating sleep-wake dynamics, and their loss
causes narcolepsy, a disorder characterized by severe instability of sleep and wake states. However, the mechanisms
through which Orx stabilize sleep and wake are not well understood. In this work, an explanation of the stabilizing effects of
Orx is presented using a quantitative model of important physiological connections between Orx and the sleep-wake
switch. In addition to Orx and the sleep-wake switch, which is composed of mutually inhibitory wake-active monoaminergic
neurons in brainstem and hypothalamus (MA) and the sleep-active ventrolateral preoptic neurons of the hypothalamus
(VLPO), the model also includes the circadian and homeostatic sleep drives. It is shown that Orx stabilizes prolonged waking
episodes via its excitatory input to MA and by relaying a circadian input to MA, thus sustaining MA firing activity during the
circadian day. During sleep, both Orx and MA are inhibited by the VLPO, and the subsequent reduction in Orx input to the
MA indirectly stabilizes sustained sleep episodes. Simulating a loss of Orx, the model produces dynamics resembling
narcolepsy, including frequent transitions between states, reduced waking arousal levels, and a normal daily amount of total
sleep. The model predicts a change in sleep timing with differences in orexin levels, with higher orexin levels delaying the
normal sleep episode, suggesting that individual differences in Orx signaling may contribute to chronotype. Dynamics
resembling sleep inertia also emerge from the model as a gradual sleep-to-wake transition on a timescale that varies with
that of Orx dynamics. The quantitative, physiologically based model developed in this work thus provides a new
explanation of how Orx stabilizes prolonged episodes of sleep and wake, and makes a range of experimentally testable
predictions, including a role for Orx in chronotype and sleep inertia.
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Introduction

Since the discovery of the orexin A and orexin B neurotrans-

mitters (also termed hypocretin 1 and 2) by Sakurai et al. [1] and

de Lecea et al. [2] in 1998, the orexinergic neurons of the lateral

hypothalamic area (Orx) have been implicated in a wide range of

neurological processes, including a key role in the regulation of

sleep and wake [3,4]. The orexins have also been shown to have a

role in feeding, emotion, reward function, and motivation [1,5–8].

The neurodegenerative disorder narcolepsy [9] is characterized by

a loss of approximately 90% of Orx [10], and is a condition that

affects approximately 0.05% of the population [11]. It is thought

that some process–perhaps an autoimmune attack [12]–selectively

destroys these orexinergic cells [13]. Narcolepsy is characterized

by awakenings during sleep, unintentional naps during wake,

drowsiness, and difficulty in waking from sleep [14]. The condition

is often accompanied by cataplexy, the sudden loss of muscle tone

triggered by strong emotions [15], although over one quarter of all

narcoleptics do not have cataplexy [11], perhaps due to less severe

loss of Orx [16,17].

Although the link between the loss of Orx and narcolepsy has

been established and the key neurological pathways of Orx are

known, the mechanisms through which loss of Orx causes

narcoleptic symptoms remain unclear [18]. For example, it is

commonly thought that Orx excites the wake-promoting mono-

aminergic neurons (MA) during wake and thereby acts to stabilize

the sleep-wake switch [19,20], but it is not clear how Orx also

stabilizes sleep, the destabilization of which is a hallmark of

narcolepsy [15]. Homeostatic control of sleep in narcoleptics is

thought to be normal, since they exhibit normal recovery from

sleep deprivation and have a normal total daily sleep duration [9].

The underlying circadian dynamics in both orexin knockout mice

and narcoleptic humans also appears to be normal [9,21]. Thus,

despite apparently normal homeostatic and circadian processes, a

reduction in Orx somehow produces ‘behavioral state instability’,

with low thresholds to transition between sleep and wake [9,22].

In this work, we present a detailed, physiologically justified
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explanation of this phenomenon and explain how the loss of Orx

gives rise to these characteristically low thresholds for behavioral

state transitions in narcolepsy.

Phenomenological models of sleep-wake dynamics that have

built upon Borbély’s two-process model [23] have been successful

in predicting a range of sleep-wake behaviors [24], including

subjective fatigue during sleep deprivation, internal desynchroni-

zation, fragmented sleep during continuous bedrest, and the sleep

durations of shift workers [25,26]. However, incorporating Orx

into such models is problematic because they lack a physiological

framework. In contrast, physiologically based models of sleep

represent the neuronal populations and their interactions explic-

itly, allowing new physiological information to be incorporated

straightforwardly. Following advances in the understanding of key

sleep-regulatory nuclei in the brainstem and hypothalamus

[27,28], a range of physiologically based sleep models have been

developed [29–34]. In this work we build on the Phillips-Robinson

model of the sleep-wake switch [35], which is based on the

mutually-inhibitory sleep-active ventrolateral preoptic nucleus

(VLPO) and the wake-active monoaminergic hypothalamic and

brainstem neuronal populations (MA). The model produces flip-

flop dynamics between sleep and wake, as driven by homeostatic

and circadian processes. Although sleep/wake dynamics are

known to be regulated by a variety of processes [36], the

Phillips-Robinson model captures the core dynamics of the sleep-

wake switch, which turns out to be a powerful approximation.

Despite being fitted using a relatively small set of behavioral and

physiological data, the model has predicted the results of many

experiments, while providing insights into the physiological

dynamics that underly its predictions, including sleep deprivation

[37,38], sleep fragmentation [39], caffeine intake [40], mamma-

lian sleep [41], shift work [42], and internal desynchrony [43], and

has successfully predicted sleep latencies [37], arousal thresholds

[39], and subjective fatigue levels [38].

The paper is structured as follows. First we explain the

mathematical formulation of the new model in terms of the

relevant physiology. The dynamics of the model are then

characterized in terms of net drives to the sleep-active VLPO

and the wake-active MA: Dv and Dm, respectively. Different

combinations of these drives are shown to control whether: (i) the

system is awake, (ii) the system is asleep, or (iii) sleep and wake are

simultaneously stable, with characteristic thresholds for transitions

between the states. These results allow us to explain how Orx’s

known mechanisms, including exciting the MA, relaying a

circadian signal to the MA, and being inhibited by the VLPO,

all act to stabilize extended bouts of sleep and wake. By including

noise in the model and simulating the loss of Orx, we show that the

model generates increasingly fragmented sleep-wake time series, as

is characteristic of narcolepsy. Finally we show that dynamics

resembling sleep inertia result from including Orx in the model,

and we link the timescale of this gradual sleep-to-wake transition to

that of Orx dynamics.

Models

In this section, we develop a new sleep model that includes Orx,

giving a non-mathematical overview of the physiology and model

structure first, and then providing further mathematical details.

The new model is an extension of an existing model by Phillips

and Robinson [35], which has been characterized in detail

previously [37,39]. The model includes the interactions between

three key neuronal populations: VLPO, MA, and Orx, as well as

the circadian and homeostatic drives. Although a wide range of

processes are thought to regulate sleep [36], VLPO, MA, and Orx

are known to play central roles [19], and here we show that many

salient features of healthy and pathological sleep can be captured

by considering just this reduced system. Note that because we do

not distinguish between REM sleep and different stages of NREM

sleep (since the physiological basis for these dynamics are yet to be

pinned down [44]), we do not attempt to model transitions

between NREM and REM sleep stages, nor any effect of Orx on

the frequency and timing of these transitions [19,21]. The link

between Orx loss and cataplexy [15] is also not investigated here;

we group the monoaminergic nuclei as a uniform population,

whereas cataplexy involves a discoordination of firing activity

across the monoaminergic nuclei [45]. Such dynamics could be

explored in future work (cf. [44]), but here we focus solely on the

dynamics of sleep and wake.

Physiology and Model Overview
The flip-flop dynamics of sleep and wake are proposed to result

from the mutual inhibition of wake-active MA and sleep-active

VLPO [27,46]. The MA group includes nuclei that use

monoaminergic neurotransmitters: the histaminergic tuberomam-

millary nucleus (TMN), norepinephrinergic locus coeruleus (LC),

serotoninergic dorsal raphé nucleus (DR), and dopaminergic

ventral tegmental area (VTA) [47–49]. Orx excites the MA during

wake [8,19,50]. Monoaminergic neurotransmitters inhibit the

VLPO, and the VLPO inhibits the MA via GABAergic projections

[4,51,52]. Due to the mutual inhibition between the MA and

VLPO populations, only a single population is active at any one

time, and the dynamics resemble that of an electronic flip-flop

circuit [27]. This provides the basis for consolidated bouts of either

sleep (active MA, suppressed VLPO) or wake (active VLPO,

suppressed MA), with the active population determined by the net

inputs, or drives, to each population. Although populations other

than the VLPO have been implicated as having a role in inducing

and/or maintaining sleep, including the median preoptic nuclei

(MnPO) [19], melanin-concentrating hormone cells in the

hypothalamus [53], neurons in the striatum and globus pallidus

[54], the rostral medullary brainstem [55], and thalamus [56],

here we focus on the important role of the VLPO [57] and note

that this component of the model could in principle represent one

or more sleep-promoting centers that act in concert.

The dynamics of sleep and wake are thought to be controlled

primarily by the circadian, C, and homeostatic, H , drives [23,25].

The 24 h periodic circadian signal, which originates in the

suprachiasmatic nucleus of the hypothalamus (SCN), is entrained

by the light/dark cycle [4]. The VLPO receives an inhibitory

circadian projection, while Orx receives an excitatory circadian

projection, primarily via the dorsomedial nucleus of the hypothal-

amus (DMH) [4,58,59]. The homeostatic sleep drive, H , increases

during wake and decreases during sleep, and may correspond to

some sleep-regulatory substance [60,61], such as adenosine

[62,63] or cytokines [36,64]. The homeostatic sleep drive

disinhibits the VLPO [4,52].

A schematic depiction of the model, which includes the

neuronal interactions and drives described above, is shown in

Fig. 1A. For analytical purposes, the model can be analyzed in a

reduced representation that focuses on the MA–VLPO sleep-wake

switch, as shown in Fig. 1B. In this picture, net external drives to

the VLPO and MA are grouped as Dv and Dm, respectively, and

control the evolution of arousal state over time: Dv includes

inhibition from C and disinhibition from H, while Dm includes an

excitatory input from Orx, which itself receives an excitatory input

from C. This reduced representation is used in this work help

explain how Orx acts to stabilize sleep and wake by modulating

Dm. The remainder of this section contains details of how the

Model of Orexin and Sleep-Wake Stability
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neuronal populations and drives described above are modeled

mathematically.

Neuronal Interactions
Our model captures the average properties of populations of

neurons and their interactions [65], and is based on previously

successful approaches to modeling the corticothalamic system [65–

67]. Each population, j~v,m,x, where v stands for VLPO, m for

MA, and x for Orx, is represented by its mean cell-body potential

relative to resting, Vj(t). The mean firing rate of each population,

Qj(t), is approximated by a sigmoidal function of Vj(t) [68]:

Qj:S(Vj)~
Qmax

1z exp½{(Vj{h)=s0 �
, ð1Þ

where Qmax is the maximum possible firing rate, h is the mean firing

threshold relative to resting, and s
0
p=

ffiffiffi

3
p

is its standard deviation

[66]. Due to the small volume of the relevant nuclei, we assume

spatial homogeneity of each population and neglect propagation

delays between neurons. This assumption is reasonable because

interactions within the relevant neuronal populations occur on

timescales of milliseconds, whereas we are interested in capturing

arousal-state dynamics that occur on timescales of seconds or

longer. We assume that changes in postsynaptic potentials are

proportional to the firing rates, Qj , of the presynaptic populations,

and use the constants, nij , to represent the strength of the synaptic

connection from population j (~v,m,x) to population i (~v,m,x).
Time constants, tj , control the rate at which the dynamics of Vj

evolve via the decay rate of neuromodulator effects.

The equations governing the VLPO (v) and MA (m) populations

are as follows:

tv
dVv

dt
~{VvznvmQmzDvzjv(t), ð2Þ

tm
dVm

dt
~{VmznmvQvzDmzjm(t), ð3Þ

where the negative coefficients, nvmv0 and nmvv0, capture the

mutual inhibition of the two populations [27,46]. Net drives are

grouped as Dv and Dm, while jv(t) and jm(t) are independent,

Gaussian-distributed, zero-mean white noise processes with

standard deviations sv and sm, respectively. These noise variables

represent the inherent noise in biological processes and fluctuating

external inputs to these populations. In the absence of physiolog-

ical data to estimate the relative noisiness of drives to the VLPO

and MA, we set them equal here for simplicity (i.e., s~sv~sm) so

that jv ~N (0,s) and jm ~N (0,s). Equations (2) and (3) thus

capture the flip-flop dynamics between the VLPO and MA [27].

Orx is modeled as a neuronal population in the same way as for

the MA and VLPO, with dynamics governed by.

tx
dVx

dt
~{VxznxvQvzDx, ð4Þ

where nxvv0 captures the inhibition of Orx by the VLPO [8,69],

and drives to Orx are grouped as Dx. Due to inhibition from the

VLPO, Orx is suppressed during sleep, but is active during wake

when the VLPO is inactive. Orx may receive inhibitory inputs

from serotonin and norepinephrine [50], while noradrenergic

input has been shown to be excitatory, but inhibitory following

sleep deprivation [70]; other studies have reported no reciprocal

connections from monoamine-containing groups that are inner-

vated by Orx [71]. Given this uncertainty in the net connection

between MA and Orx, we assume it to be small relative to the

other terms modeled in Eq. (4) and neglect it by setting nxm~0
here. We note that a large positive nxmw0 could produce an

instability in the model with mutually-excitatory Orx and MA

reinforcing the behavior of each other during wake (that would

require the modeling of additional systems to stabilize), while small

negative connections, nmxv0, could be accommodated with

relatively minimal affect on the qualitative dynamics reported

here [e.g., compensating by increasing both jnxvj and Ax, cf. Eq.

(9)]. A noisy input to Orx is not included for simplicity, because

Orx excites the MA in the model, which itself receives a direct

noisy input, jm(t). If modeled, input noise to Orx, jx(t), added to

Eq. (4), would be relayed to the MA during wake when Orx is

active, but suppressed during sleep when Orx is inactive,

Figure 1. Schematic of the model. The model includes interactions between the sleep-active ventrolateral preoptic area of the hypothalamus
(VLPO), the wake-active monoaminergic brainstem nuclei (MA), and the orexinergic neurons of the lateral hypothalamic area (Orx), as well as the
circadian (C) and homeostatic (H) drives. Arrows indicate interactions between the populations, as well as the pathways of the circadian and
homeostatic drives, and represent either excitatory (z) or inhibitory ({) interactions. A All modeled interactions are shown, including the mutual
inhibition between VLPO and MA [27], inhibition of Orx by VLPO [8], and excitatory input from Orx to MA [72]. The circadian drive, C, which originates
in the suprachiasmatic nucleus (SCN), is afferent to both VLPO (inhibition) and Orx (excitation) [4], while the homeostatic sleep drive, H , which
increases during wake and decreases during sleep, disinhibits VLPO [63]. Example two day time traces for normal sleep-wake behavior are annotated
below the C and H drives. B The model can be mathematically reduced to the core dynamics of mutual inhibition between the sleep-active VLPO
and wake-active MA groups. In this representation, net drives, Dv and Dm , to VLPO and MA, respectively, control the arousal state dynamics. This
reduced representation is used throughout this work to visualize and understand the model dynamics.
doi:10.1371/journal.pone.0091982.g001
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Drives
The circadian drive for wake is taken to be entrained to the

daily light/dark cycle and is approximated by a sinusoidal function

of time,

C(t)~ sin vt, ð5Þ

where v~(2p=24) {1. An oscillation amplitude of unity is used

without loss of generality because the actual amplitude is absorbed

into the weights, nvc and nxc, that control the circadian inputs to

VLPO and Orx, respectively, while any constant offsets in C are

incorporated in the constants Av and Ax in Eqs (7) and (9),

respectively. This sinusoidal form of C is used here for simplicity,

but we note that dynamic circadian oscillator models can also be

implemented straightforwardly [42,43].

The dynamics of the homeostatic sleep drive, H , depend on the

arousal state, as described above. Our model of H is based on a

sleep-promoting factor that increases during wake when the MA is

active (Qm is high) and decreases during sleep when the MA is

suppressed (Qm&0). These dynamics are described by

x
dH

dt
~{Hzmh

Q2
m

ghzQ2
m

, ð6Þ

where x sets the timescale on which H changes, and the constants

mh and gh control the dependence of H production on Qm. In

some previous work, a linear H production term was used [35],

which is appropriate for modeling basic sleep-wake dynamics

when Qm does not vary significantly during wake. In this work,

however, waking arousal states with very different Qm are

simulated, and thus the saturating form of the final term in Eq.

(6) (introduced previously [38]) is required to avoid unreasonably

large disparities in H production between waking states with

different Qm.

Net drives to each neuronal population are defined as follows:

Dv~nvcCznvhHzAv, ð7Þ

Dm~nmxQxzAm, ð8Þ

Dx~nxcCzAx, ð9Þ

where nvcv0 because the VLPO receives an inhibitory projection

from the DMH, which itself receives an excitatory circadian

projection [4,59]; nvhw0 because the homeostatic process H
disinhibits the VLPO [4,52,63]; nmxw0 because Orx excites the

MA [72] (including the DR [73], LC [74], and TMN [75]); and

nxcw0 because Orx receives a strong excitatory circadian

projection from the DMH [4,58]. Inhibition of Orx by homeo-

static sleep-regulatory substances [76] is assumed to be small and is

neglected here by setting nxh~0. Constants, Ai, represent time-

averaged inputs to each population from external sources not

explicitly modeled here, and could include any constant offsets of

the circadian drive for Av and Ax, or any time-averaged

cholinergic inputs to the MA for Am, for example. Altogether,

Dv includes inhibition from C and disinhibition from H , Dm varies
with Orx activity, and Dx is circadian. The excitation of MA by

Orx is included as the nmxQx term in Dm [Eq. (8)] rather than

appearing directly in Eq. (3), which is mathematically equivalent

but allows us to focus on the sleep-wake switch by interpreting Orx

as a component of Dm. This excitatory input to the MA is the only

effect of Orx on the rest of the model, and hence Orx loss can be

simulated by reducing the single parameter nmx. Finally note that

because the drive to Orx, Dx, affects the sleep-wake switch only

through Dm, we can focus on a reduced form of the model in

which the dynamics are summarized by the values of Dv and Dm,

as in Fig. 1B. This approximation is valid if Dv and Dm are slowly-

varying compared to the dynamics of Vv and Vm, which holds

here because C and H vary on the timescale of a day, and

tx&tv,tm.

Parameter Constraints and Computation
Compared to the original Phillips-Robinson model, the current

model includes new parameters, as well as adjustments to some

existing parameters, as listed in Table 1. Most existing parameters

are unchanged, with new and altered parameters shown in

boldface in Table 1. We maintain as much compatibility with

previous work as possible to ensure that previous model

predictions are retained and that changes to the model’s structure

represent improvements rather than simply providing more

flexibility to fit the phenomena presented here. For example, the

new model reproduces both the normal flip-flop sleep-wake

dynamics of the Phillips-Robinson model, and the same behavior

during total sleep deprivation as reported previously [38] (see File

S1).

Parameters are constrained separately in different dynamical

regimes of the model. With Orx absent from the model, the

qualitative dynamics should reflect a severe narcoleptic or Orx-

knockout phenotype, which we use to constrain the constant

inputs, Am and Av, the circadian parameters, nvc and nxc, and the

noise variance, s. The homeostatic production parameters, mh and

gh, are set to maintain approximately eight hour daily sleep

durations across a range of nmx; tx is set to match the empirical

timescale of sleep inertia (explained in detail later); and the Orx

parameters, Ax, nmx, and nxv, are set to maintain normal sleep-

wake behavior. Further details of how the parameters are

constrained, including justifications for all parameter values, are

in File S1. Note that the aim of this study is not to perform

rigorous parameter constraints by fitting to clinical datasets (which

could be performed in future), but rather to show that

physiologically reasonable values of parameters exist that can

plausibly account for clinical observations of narcolepsy.

The current model differs from the original Phillips-Robinson

model [35] in two key ways. Most obviously, the new model

includes Orx [Eq. (4)], which contributes a time-varying drive to

the MA that was previously constant (the parameter A in the

original model). The other major change is the reduced magnitude

of circadian input to the VLPO, nvc. In the Phillips-Robinson

model, the circadian drive affected the sleep-wake switch only as

an input to VLPO, with nvc~{2:9 mV [35]. However, following

VLPO lesions, strong circadian rhythmicity in sleep-wake

behavior persists [57], and Orx has been shown to play an

important role in the circadian control of sleep [77]. These

experimental results suggest that the dominant circadian input to

the sleep-wake switch may be via Orx to MA. The parameters

used in this model reflect this, with nxc~z1:0 mV s and

Model of Orexin and Sleep-Wake Stability
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have been shown to generate sleep phenotypes of other

mammalian species [78]).

Combining the definitions of the neuronal interactions and

drives above, the output of the full model is the solution of the

following four coupled differential equations:

tv

dVv

dt
~{VvznvmS(Vm)znvcCznvhHzAvzjv(t), ð10Þ

tm
dVm

dt
~{VmznmvS(Vv)znmxS(Vx)zAmzjm(t), ð11Þ

tx
dVx

dt
~{VxznxvS(Vv)znxcCzAx, ð12Þ

x
dH

dt
~{Hzmh

½S(Vm)�2

ghz½S(Vm)�2
, ð13Þ

where C is defined in Eq. (5). When noise is included in the model,

these stochastic differential equations are solved numerically using

the Euler-Marayama method [79] with a time step Dt~1 s (time

steps Dt 5 s produced sufficiently converged dynamics). The

model can be simulated without noise by removing the terms jv(t)
and jm(t) from Eqs (10) and (11), whence the model equations

reduce to four coupled ordinary differential equations that are

solved numerically using the variable-order solver for stiff

problems, ode23s, in Matlab 2011b (Matlab is a product of

The MathWorks, Natick, MA). Throughout this work, periods in

which QmwQv are labeled ‘wake’ and periods in which QmƒQv

are labeled ‘sleep’; transient noisy fluctuations in state lasting less

than 60 s are ignored (the main results are not sensitive to this

state-labeling heuristic, see File S1).

Results and Discussion

In this section a detailed analysis of the model is used to

characterize Orx’s role in sleep-wake dynamics. First we

investigate the model’s dynamical properties in terms of the net

drives to the sleep-active VLPO and wake-active MA: Dv and Dm,

respectively. The results are used to explain how the loss of Orx in

the model reduces waking arousal and lowers thresholds for

transitions between wake and sleep, as occurs in narcolepsy.

Simulations indeed reveal an increase in sleep-wake fragmentation

as orexin levels are reduced, as well as changes to a range of other

key sleep-wake statistics. Finally, we explain how dynamics

resembling sleep inertia are predicted by the model due to an

asymmetry between sleep-to-wake and wake-to-sleep transitions.

Dependence of Sleep-wake Dynamics on Net Drives to
the VLPO and MA

In this section, we explain how the model’s dynamics depend on

the net drives to the sleep-wake switch: Dv and Dm. In particular,

we identify combinations of Dv and Dm that produce: (i) a stable

wake state, (ii) a stable sleep state, and (iii) where wake and sleep

are simultaneously stable and noise-induced transitions between

the two states are possible. The analysis will facilitate an

understanding of the full model dynamics, which will be

investigated in later sections. Note that the results of this section

hold equally for the current model and the original Phillips-

Robinson model [35], which was also centered around the

VLPO–MA sleep-wake switch, because the parameters that

determine the dynamical properties of this space: nvm and nmv,

and the sigmoidal function [Eq. (1)], are not altered in this work.

A reduced representation of the model, in terms of the net

drives Dv and Dm, is shown schematically in Fig. 1B. In Fig. 2A,

the model’s equilibrium states are labeled in this space and, as

might be expected intuitively, increasing Dv promotes sleep and

increasing Dm promotes wake. Importantly, we find an interme-

diate set of drives, Dv and Dm, for which sleep and wake states are

simultaneously stable (the bistable region shaded in Fig. 2A).

Model dynamics at fixed values of Dv and Dm are represented in

the space of the average cell-body potentials of the VLPO, Vv,

and the MA, Vm, as shown in the remaining Vv–Vm plots in

Figs. 2B–F, for selected values of Dv and Dm. The Vv–Vm plot was

introduced in previous work to analyze the model on timescales

shorter than that of changes in Dv and Dm, which can be treated

as control parameters of the fast dynamics [39].

Table 1. Nominal model parameter values.

Param. Value Param. Value Param. Value

Connection strengths nvm {2:1 mV s nmv {1:8 mV s nmx 0.3 mV s

vxv {1.0 mV s

Time constants tm 10 s tv 10 s tx 120 s

Sigmoid parameters Qmax 100 s{1 h 10 mV s
0 3 mV

Drive parameters vvc {0.30 mV s vxc 1.0 mV s nvh 1:0 mV

Av {8.5 mV Am 0.52 mV Ax 1.0 mV

Homeostatic dynamics x 45 h h 17 s h 2.3

Noise standard deviation 1 mV

Parameters either introduced or modified in this work are shown in boldface. All other parameter values correspond to those of the original Phillips-Robinson model,
which were constrained and subsequently verified on a broad range of experimental protocols including sleep deprivation [37,38], sleep fragmentation [39], caffeine
intake [40], mammalian sleep [41], shift work [42], and internal desynchrony [43] in previous work. New parameters introduced here are nmx , nxv , tx , nxc , Ax , and s.
doi:10.1371/journal.pone.0091982.t001
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nvc~{0:30 mV s (cf. File S1). In future work, physiological and

behavioral data could be used to further constrain the relative

contributions of these two circadian pathways (changes in which



The system is awake at high Dm and low Dv: the region labeled

‘wake’ in Fig. 2A. In this region, the system attracts onto a single

stable equilibrium that corresponds to a waking state with high Vm

and low Vv (i.e., active MA and suppressed VLPO). The drives, Dv

and Dm, control the level of waking arousal in this region: Vm (and

hence Qm) increases with Dm (higher drive to wake) and decreases

with Dv (higher drive to sleep), and vice-versa for Qv. An example

Vv–Vm representation of the model in this waking region, at

(Dv,Dm)~(1:0,1:2) mV, is shown in Fig. 2B. Example time series

for Qv and Qm at these net drives with noise, plotted in the upper

panel of Fig. 2B, are the result of noisy deviations from the stable

waking state, combined with the attraction of the system back

toward equilibrium.

At high Dv and low Dm, the region labeled ‘sleep’ in Fig. 2A, the

system attracts onto a single stable equilibrium, as above, but now

the equilibrium is a sleep state with active VLPO and suppressed

MA. As before, the steady-state firing rate, Qv, of the sleep

equilibrium increases with Dv and decreases with Dm, and vice-

versa for Qm. An example is given for (Dv,Dm)~(1:6,0:6) mV in

Fig. 2C. Dynamics consist of noisy perturbations about the stable

sleep state.

More complex dynamics occur at intermediate Dv and Dm: the

shaded bistable region in Fig. 2A. The boundaries of this bistable

region correspond to saddle-node bifurcations of the model [39]

(see File S1 for mathematical details). We refer to the leftmost

boundary in Fig. 2A as the ‘wake bifurcation boundary’ (beyond

which only wake is stable), and the rightmost boundary as the

‘sleep bifurcation boundary’ (beyond which only sleep is stable). In

the bistable region, the stable wake and sleep equilibriums coexist,

and are separated by a separatrix in Vv–Vm space, which is plotted

as a dotted line in Figs. 2D–F. The two regions on either side of

this separatrix correspond to wake and sleep basins: when the

system is in the wake basin it will attract (deterministically) onto

the stable wake equilibrium and when it is in the sleep basin it will

attract (deterministically) onto the stable sleep equilibrium.

Transient external drives can cause the system to cross this

separatrix and thereby change state. We consider only the noise

processes jv(t) and jm(t) in this work, but note that other types of

impulsive drives could also cause a lasting change in the state of

the system, e.g., the short acoustic stimuli during sleep modeled in

previous work [39]. Three points in the bistable region, labeled D,

E, and F in Fig. 2A are shown in Figs. 2D–F and will be studied in

turn.

In the bistable region with Dm and Dv both high, e.g., for

(Dv,Dm)~(1:6,1:1) mV, shown in Fig. 2D, the sleep and wake

equilibriums are well-separated and the thresholds for transition-

ing between sleep and wake are high. Consequently, state

transitions are highly improbable, and the system mostly acts as

if only a single stable equilibrium exists: remaining either awake or

asleep depending on its initial condition. Time series are shown in

Fig. 2D for when the system is initially in a wake state, and when

the system is initially in a sleep state. In both cases, noise with s~1
mV is insufficient to change the state of the system (on timescales

meaningful to the current dynamics).

In the bistable region at lower net drives, Dv and Dm, the

thresholds for state transitions decrease so that noise can change

the state of the system. The probabilities of wake-to-sleep and

sleep-to-wake transitions depend on the position in the bistable

region, and are in general unequal. As the system approaches the

sleep bifurcation boundary, the wake equilibrium moves closer to

the saddle point and the sleep equilibrium moves further from the

saddle point, thereby biasing the transition probabilities further

toward sleep. The reverse occurs near the wake bifurcation

boundary, where sleep-to-wake transitions become increasingly

more probable than wake-to-sleep transitions. For example,

consider the point (Dv,Dm)~(1:11,0:61) mV, labeled ‘E’ in

Fig. 2A, which is nearer the sleep bifurcation boundary than the

wake bifurcation boundary. Here, thresholds for state transitions

are relatively low and the position of the wake equilibrium is closer

to the saddle point than the position of the sleep equilibrium, as

shown in Fig. 2E. Wake-to-sleep transitions are more probable

than sleep-to-wake transitions, and simulated time series, such as

that plotted in Fig. 2E, show the system mostly in sustained sleep

periods, while wake bouts are relatively short-lived.

Finally, we study the model dynamics at very low drives, Dv and

Dm, in the bistable region, using the point (Dv,Dm)~(1:05,0:58)
mV as an example, shown in Fig. 2F. In this region, the stable

sleep and wake equilibriums are both close to the saddle point so

that thresholds for state transitions are very low and hence state

transitions are highly probable with noise in the model. An

example time series generated at these net drives, shown in the

upper panel of Fig. 2F, is highly fragmented, with frequent

transitions between sleep and wake. Equilibrium mean firing rates

are relatively low: both Qv during sleep, Qv~2:9 s{1, and Qm

during wake, Qm~2:5 s{1, indicative of a weakening of the

normally pronounced sleep-wake distinction.

In summary, we have shown that lasting transitions between

sleep and wake can only occur for a subset of drives, Dv and Dm, in

the bistable region, with state transition thresholds that decrease as

Dv and Dm decrease. Note that at low Dv and Dm beyond the

bistable region (i.e., the lower lefthand corner of Fig. 2A), mean

firing rates of both populations are low; this pathological regime is

not accessible for the parameters used in the current model

formulation (without adding persistent external drives).

The Effect of Orx on Thresholds for State Transitions
In this section, the above characterization of the model’s

dynamics as a function of Dv and Dm is used to understand how

time-varying inputs to both populations control the evolution of

arousal-state dynamics. As explained in Models above, the net drive

to VLPO, Dv [Eq. (7)], includes an oscillatory circadian input, C, a

homeostatic sleep drive, H , that increases during wake and

decreases during sleep, and other constant drives, Av. The net

drive to MA, Dm [Eq. (8)], includes an excitatory input from Orx,

nmxQx, and time-averaged drives from processes not modeled

here, Am. Each of these physiological mechanisms contributes to

moving the system through the Dv–Dm plane and their

combination determines the arousal-state dynamics of the model.

The model is examined without added noise in this section to

provide a preliminary understanding of the regions of the Dv–Dm

plane that the system moves through; the role of noise in

producing state transitions is investigated later.

For reference, we first describe the original Phillips-Robinson

model [35], in which Dm is constant and trajectories in the Dv–Dm

plane are horizontal lines. The combination of H and C provides

a net oscillatory drive, Dv, producing normal, flip-flop sleep-wake

dynamics, as shown in Fig. 3A. Due to the 24 h oscillation in Dv,

the system is driven back and forth between sleep and wake, falling

asleep at the sleep bifurcation boundary at high Dv and waking up

at the wake bifurcation boundary at a lower Dv. Because Dm is

constant, the Phillips-Robinson model can be represented as a

function of the single control parameter Dv (on timescales shorter

than that of changes in Dv [39]), yielding a hysteresis loop [35,38].

With Orx included, the new model produces a loop-like

trajectory through the Dv–Dm plane, shown in Fig. 3A. When the

system is asleep (plotted gray in Fig. 3A), Orx is inactive (i.e.,

Qx&0), due to inhibition from the VLPO, and Dv decreases,

mostly due to a decreasing homeostatic sleep drive, H . When the
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system wakes up, Orx activates, exciting the MA and causing an

increase in Dm that moves the system out of the bistable region

where transitions between wake and sleep can occur. During the

waking period (plotted black in Fig. 3A), H builds, increasing Dv,

and the excitatory circadian input to Orx modulates waking

arousal levels, increasing Dm (and hence Qm) to a maximum at the

circadian peak. The system then moves rapidly through the

bistable region during the evening, with increasing H and

decreasing C moving the trajectory downwards and to the right,

eventually to a sufficiently low Dm that a transition back to sleep

occurs. After the system has fallen asleep, VLPO activates and

suppresses Orx, reducing Dm and preventing transitions back to

wake, thus facilitating another consolidated sleep bout. That Orx

activates during wake and is suppressed during sleep therefore

moves the system away from the bistable region where transitions

Figure 2. Model dynamics represented in terms of the net drives to the sleep-active VLPO, Dv, and the wake-active MA, Dm. A Three
distinct regions of Dv–Dm space are: (i) wake: at low Dv and high Dm a stable wake state exists, (ii) sleep: at high Dv and low Dm a stable sleep state
exists, and (iii) bistable (shaded): at intermediate Dv and Dm wake and sleep states are simultaneously stable and transient noise can produce lasting
changes of state. Simulated 5-h time series and Vv–Vm plots for fixed points in this space are shown in the remaining figures. Time series are plotted
for average firing rates of the VLPO, Qv (red), and the MA, Qm (blue). In the Vv–Vm plots, we include Vm nullclines (solid lines), Vv nullclines (dashed
lines), stable equilibriums (solid circles), saddle points (open circles), and the separatrix (dotted black line); see File S1 for definitions and numerical
details. B Dm is high and Dv is low; a single stable wake state exists. C Dv is high and Dm is low; a single stable sleep state exists. D In the bistable
region at high Dv and Dm , thresholds for transitions between wake and sleep are high and hence state transitions are extremely improbable: the
system remains either awake or asleep depending on its initial state (on timescales relevant to the current dynamics). E In the bistable region nearer
the sleep bifurcation boundary, transitions from wake to sleep are more probable than transitions from sleep to wake. F In the bistable region at low
Dv and Dm , thresholds for transitions between sleep and wake are low and simulated time series are highly fragmented.
doi:10.1371/journal.pone.0091982.g002
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can occur and promotes consolidated bouts of both sleep and

wake.

Note that external influences, such as intense physical activity or

caffeine at the end of the day would contribute an arousing drive

and increase Dm (perhaps directly [80], and/or via Orx [81]), and

thereby prolong wake. Conversely, lying in bed in a dark room

would reduce the net input to the MA from arousing sensory

stimuli and decrease Dm, hastening the transition to sleep. These

examples help to demonstrate how the model could be applied to

intuitive real-world scenarios with more complicated environmen-

tal stimuli, but we do not pursue them further here.

Because Orx enters our model as an excitatory input to MA, we

can investigate model dynamics with Orx completely removed

from the model by setting nmx~0. This yields the small trajectory

labeled ‘no Orx’ in Fig. 3A. The trajectory occurs at a constant Dm

(~Am), and oscillates horizontally according to the homeostatic

and circadian components of Dv [Eq. (7)]. As explained above,

thresholds for state transitions in the bistable region at low Dv and

Figure 3. Noise-free model simulations represented as trajectories in terms of net drives to the VLPO, Dv, and MA, Dm, and as time
series. A The bistable region is shaded blue, and the wake and sleep regions are labeled. The trajectory for normal dynamics (i.e., including Orx)
forms a loop and is plotted using black (wake) and gray (sleep). The trajectory for the model without Orx is a small oscillation at low Dv and Dm , and is
labeled ‘no Orx’. The trajectory for the original Phillips-Robinson model occurs at fixed Dm~1:3 mV and is shown semi-transparent for comparison
(note that the wake trajectory of the Phillips-Robinson model extends beyond the limits of the figure to Dv&{2 mV). When Orx is removed from the
model, the system oscillates at low Dv and Dm, where thresholds for transitions between wake and sleep are low. However, with Orx in the model,
the wake and sleep states are stabilized: Orx is active during wake, increasing Dm , and Orx is suppressed during sleep, decreasing Dm, thereby
moving the system away from the bistable region where state transitions can occur and promoting consolidated wake and sleep episodes. Circadian
input to Orx modulates waking arousal levels: Dm is lower in the early morning and increases to a maximum at the circadian maximum, then
decreases through the afternoon and evening. Two-day time series for noise-free model dynamics (including Orx) are also plotted as: B Firing rates
Qv (black), Qm (blue), and Qx (green, dashed), C Net drives to the VLPO, Dv [black, Eq. (7)], and the MA, Dm [gray, Eq. (8)], and D Drives C [black, Eq.
(5)] and H [gray, Eq. (6)]. Approximate clock times for a typical sleep-wake schedule are given as a guide, and sleep periods are shaded.
doi:10.1371/journal.pone.0091982.g003

Figure 4. Removing Orx from the model produces fragmented sleep-wake time series characteristic of the narcoleptic phenotype.
Simulated 24-h time series are plotted for A Normal dynamics including Orx (i.e., nmx~0:3 mV s) for Qm (blue), Qv (green), and Qx (orange), and B
Fragmented dynamics with Orx removed from the model (i.e., nmx~0). Periods of sleep, with QvwQm (black), and wake, with QmwQv (white), are
shown in the strip above the main plot. When nmx is reduced, the system moves from a regime in which Orx stabilizes extended wake and sleep
bouts, to a regime characterized by low waking arousal levels and increased fragmentation due to a lowering of the threshold for state transitions.
doi:10.1371/journal.pone.0091982.g004
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Dm are very low and waking arousal, Qm, is reduced, as is Qv

during sleep (cf. Fig. 2F). This region of the drive space, which

results from eliminating Orx from our model, thus characterizes

many of the known properties of the narcoleptic phenotype: low

thresholds for transitions between states and low waking arousal.

In simulations below, we will show that when noise is added to the

model, the dynamics of sleep and wake are correspondingly

fragmented.

Thus, the model predicts three key mechanisms through which

Orx acts to stabilize prolonged sleep and wake episodes: (i) Orx

excites the MA during wake, increasing Dm, enhancing waking

arousal levels, Qm, and raising the threshold for transitions to sleep

during a wake episode, (ii) Orx is suppressed by the VLPO during

sleep, decreasing Dm and preventing transitions back to wake, and

(iii) The excitatory circadian drive to Orx is relayed to the MA

during wake, further stabilizing wake during waking circadian

phases. Orx therefore stabilizes both wake (by increasing Dm during

wake) and sleep (by decreasing Dm during sleep).

Two-day time series for Qv, Qm, and Qx, generated by the

noise-free model (including Orx) are plotted in Fig. 3B. During

sleep, Qv is high and decreases across the night until the transition

to wake, during which Orx relays a circadian variation in waking

arousal levels, which peaks with the circadian drive near the

middle of the wake episode (cf. Fig. 3D). As shown in Fig. 3C, Dv is

dominated by H , which decreases during sleep and increases

during wake. The net drive to MA, Dm, is low during sleep and

high during wake, reflecting Orx activity. Notice that the circadian

input to Orx has a negligible effect on the system during sleep

when Orx is suppressed, but plays an important role in modulating

Orx (and hence MA) activity during wake. Time series for H and

C are plotted in Fig. 3D for comparison.

Simulating Narcolepsy
In this section, we include noise in the model and use

simulations to explain how the loss of Orx leads to the behavioral

state instability that characterizes narcolepsy. As described above,

because Orx enters our model as an excitatory input to MA, Orx

loss can be simulated by reducing nmx. Note that here we simulate

a total loss of Orx by setting nmx~0, as an Orx knockout or severe

narcoleptic, rather than the approximately 90% reduction that

occurs in narcolepsy (i.e., to nmx~0:03 mV s) to simplify the

analysis; the difference is small and a detailed investigation into the

dependence of the dynamics on nmx is provided below. Simulated

24 h firing rate time series are plotted for normal sleep-wake

Figure 5. Model dynamics as a function of orexin levels, corresponding to the model parameter mx. A Periods of sleep (black) and wake
(white) are plotted as a function of nmx across two-day model simulations. B The circadian drive, C, versus time. Various statistics taken from the
model output are plotted as a function of nmx as the mean (solid) + standard deviation (dotted) measured across a 25 day model simulation
(following a 3 day equilibration period), for C Total sleep duration per day, D Number of state transitions per day, E Duration of sleep bouts, F Qm

during wake (blue) and Qv during sleep (black), and G Homeostatic sleep drive, H .
doi:10.1371/journal.pone.0091982.g005
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behavior, with nmx~0:3 mV s, in Fig. 4A, and with nmx~0 in

Fig. 4B. No other parameters were altered between these

simulations.

The model’s outputs for normal sleep-wake behavior (in Fig. 4)

resemble those shown above for the noise-free case, with Orx

stabilizing extended daily wake and sleep episodes. With noise in

the model, sleep becomes viable toward the end of the evening (cf.

Fig. 3A), where the threshold for a transition to sleep decreases,

allowing external influences (noise in this simulation), to determine

the precise timing of the wake-to-sleep transition. The model

produces realistic firing rates, both in terms of their magnitudes

and temporal organization, for all populations. For example,

physiological data suggest that Qx is approximately 4–8 s{1

during wake and v1 s{1 during sleep [81,82]; the model has

Qx&4–7 s{1 during wake and Qxv1 s{1 during sleep, while

firing rates for MA and VLPO are similar to those produced by

the original Phillips-Robinson model.

Simulated 24 h firing rate time series with Orx absent from the

model (i.e., nmx~0) are plotted in Fig. 4B. As explained above,

thresholds for state transitions at low Dv and Dm in the bistable

region are very low, with noise causing frequent state transitions.

Without Orx to increase Dm and stabilize wake, or decrease Dm to

stabilize sleep, the system no longer has a mechanism for

producing extended episodes of either wake or sleep. When the

system is asleep, H decreases, pushing the system to lower Dv

where transitions to wake are more probable. Conversely, when

the system is awake, H increases and pushes the system to higher

Dv, where transitions to sleep are more probable. The system is

unable to escape this cycle of severe sleep-wake fragmentation.

Circadian input to the VLPO adds a circadian phase dependence

to the probability of the system being awake (higher at higher C)

or asleep (higher at lower C). Waking arousal levels (Qm) are

reduced compared to normal individuals because Orx increases

Dm during wake, a mechanism that is absent without Orx. Two

main consequences of decreasing nmx in our model are therefore

lower waking Qm, and lower thresholds for state transitions,

corresponding to two key features of the narcoleptic phenotype.

Figure 6. Dependence of sleep-to-wake and wake-to-sleep transitions on the timescale for Orx dynamics, x. Time series for the firing
rates of MA, Qm (blue), VLPO, Qv (black), and Orx, Qx (green), are plotted for the sleep-to-wake (A–C) and wake-to-sleep (D–F) transitions for tx~10 s
(A, B), tx~5 min (B, E), and tx~15 min (C, F), as a function of time relative to the change of state. The plots were produced by averaging 50 model
runs relative to the time of the state transition; one standard deviation about the mean is shown dotted. The approximate steady state firing rate for
Qm is annotated as a dashed purple line in A–C, and for Qv in D–F. The parameter tx selectively tunes the duration of the sleep-to-wake transition
but has minimal effect on the wake-to-sleep transition. This gradual wake transition can be linked to the clinical phenomenon of sleep inertia.
doi:10.1371/journal.pone.0091982.g006
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Dependence of Sleep-wake Dynamics on Orexin Levels
In this section, we explore how simulated sleep-wake dynamics

depend on nmx across the full range 0ƒnmxƒ0:3 mV s. Results

are shown in Fig. 5. In Fig. 5A, the gradual increase in sleep-wake

fragmentation that results from decreasing nmx in our model is

shown for two-day simulations by plotting sleep (black) and wake

(white) periods. Prior to each simulation, the model was

equilibrated by simulating it for three days at each given nmx. As

nmx decreases down to a reduction of approximately 50% (i.e.,

nmx&0:15 mV s), consolidated bouts of sleep and wake are still

possible, but with sleep periods commencing at an earlier

circadian phase (i.e., morningness). The model thus predicts that

consolidated sleep is robust to modest differences in orexin levels,

but also that these differences may contribute to differences in

chronotype. This represents an important potential addition to the

list of factors that are already known to influence chronotype:

inter-individual differences in patterns of self-selected light

exposure, and differences in circadian and homeostatic processes

[83]. This observation may also offer a potential explanation for

the tendency to morningness and more fragmented sleep with

aging [84], as orexin levels gradually decline [85]. The predicted

phase advance of sleep with reduction in orexin levels should be

investigated further–if borne out in clinical experiments, it may

also have therapeutic value for early disease detection, for

example.

At more severe levels of Orx loss (*>50% reduction), the system

can no longer sustain extended bouts of sleep and wake. Through

the mechanisms explained in the preceding sections, sleep-wake

fragmentation increases as nmx decreases: both naps during normal

wake periods, and awakenings during normal sleep periods.

Figure 5A reveals sharp wake-to-sleep transitions, but more

volatile sleep-to-wake transitions (often exhibiting ‘snoozing’ back

to sleep, for example); this asymmetry is related to the role of Orx

in sleep inertia, and is characterized in detail below. The two day

time series for the circadian drive, C(t), in Fig. 5B, reveals a strong

circadian phase dependence of sleep and wake across a wide range

of nmx.

The model predicts that decreasing orexin levels affects a range

of relevant sleep-wake statistics. A selection of summary statistics of

the model’s output across 25 day model simulations are shown in

Figs. 5C–G at each of 51 equally-spaced points for 0ƒnmxƒ0:3
mV s. Figure 5C shows that the total sleep time remains

approximately constant with changes in nmx, a feature that is

observed clinically [86] and was used to fit the model (see File S1).

As shown in Fig. 5D, the number of state transitions per day

remains at two (one sleep and one wake transition) when

nmx *> 0:15 mV s, then increases smoothly as nmx decreases, to

approximately 53 per day when nmx~0. The mean duration of

sleep bouts correspondingly decreases for nmx 0:15 mV s, as

plotted in Fig. 5E. The firing rates, Qm during wake, and Qv

during sleep, shown in Fig. 5F, decrease as nmx decreases, due to

reduced promotion of wake. As shown in Fig. 5G, the mean value

of H decreases slightly as nmx is decreased, from SHTt&10:5 for

nmx~0:3 mV s (normals) to SHTt&9:5 for nmx~0.

Note that only the single model parameter, nmx, was altered in

these simulations; the circadian and homeostatic drives were not

changed, consistent with available experimental evidence suggest-

ing that the circadian and homeostatic processes themselves

appear to be normal in narcoleptics [13,19]. We also emphasize

that our aim is to show the qualitative behavior of our model as

orexin levels decrease, while the quantitative values predicted

could be fitted to specific clinical datasets in the future.

Sleep Inertia
Having explained how Orx stabilizes sleep and wake, and

demonstrated that its loss produces sleep-wake fragmentation, in this

final section we investigate how Orx affects the dynamics of state

transitions. In our model, the timescale on which Orx dynamics

occur, tx, determines the timescale on which the MA receives an

excitatory input upon awakening, and also the timescale on which

this input is reduced following a transition to sleep. Here we show

that this timescale selectively affects the sleep-to-wake transition,

producing dynamics resembling sleep inertia, and discuss how the

mechanism has a more general role in stabilizing arousal state

changes, including naps during wake and awakenings during sleep.

The model predicts an asymmetry between the wake-to-sleep

and sleep-to-wake transitions. In the original Phillips-Robinson

model, the input to the MA was a constant, but in the current

model, the input varies with Orx activity, which increases from a

low value during a sleep-to-wake transition, and decreases from a

high value during a wake-to-sleep transition. This change has a

minimal effect on the wake-to-sleep transition, which occurs at high

Dv and Dm (cf. Fig. 3A), and is sharp, with the system attracting

rapidly onto the sleep equilibrium. Once the system has begun to

attract onto the sleep equilibrium, the threshold for a transition

back to wake is very high and thus highly unlikely. By contrast, the

sleep-to-wake transition is much more volatile because it occurs at

low Dv and Dm (cf. Fig. 3A) where the thresholds for state

transitions are low. In addition, the circadian drive, C, and hence

Orx activity are both low in the morning, yielding low waking

arousal levels, Qm, immediately following a normal morning

awakening. For normal dynamics, the model therefore produces

abrupt wake-to-sleep transitions but gradual and relatively volatile

sleep-to-wake transitions (with the possibility of snoozing back to

sleep). These qualitative dynamics resemble sleep inertia, a well-

known phenomenon [87–90] that describes how ‘‘immediately after

awakening from sleep, alertness is low’’ [91].

We find that the timescale for the sleep-to-wake transition

depends on the timescale for Orx dynamics, tx. To demonstrate

this, we plot time series for Qm(t), Qv(t), and Qx(t) for normal

sleep-to-wake and wake-to-sleep transitions in Fig. 6 for selected

values of tx~10 s, tx~5 min, and tx~10 min. The time

constants tv and tm are maintained at their previous values of 10 s,

for consistency with previous work (including the model’s response

to external stimuli [39]). As shown in Figs. 6A–C, tx controls the

timescale on which Orx activates during sleep-to-wake transitions,

and hence that on which Qm, and waking arousal levels, increase

to a steady level. This gradual sleep-to-wake transition stems from

a longer timescale, tx, and constitutes a plausible mechanism for

sleep inertia. Time series for wake-to-sleep transitions for the same

three values of tx are plotted in Figs. 6D–F. Because normal wake-

to-sleep transitions occur when Dv and Dm are high, the system

attracts rapidly onto the sleep state, and the wake-to-sleep

transition exhibits minimal dependence on tx. The parameter tx

thus selectively tunes the timescale of sleep inertia in our model.

Depending on the study and the way sleep inertia is measured,

its duration has been found to range from a few minutes to several

hours, but in the absence of severe sleep deprivation, rarely

exceeds 30 min [89]. For all simulations in this work, we set tx~2
min, for which Qm saturates over approximately 6 min following a

normal morning awakening. The longer timescale for sleep inertia

reported in some clinical studies [87,88] may reflect the circadian

input to Orx, which increases arousal levels, Qm, following an

awakening on a longer timescale (to a maximum at the circadian

peak in the mid-afternoon for a normal sleep-wake schedule,

cf. Fig. 4A). Thus, while other models have used ad hoc processes

to reproduce the dynamics of sleep inertia (e.g., the exponentially-
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saturating ‘inertia component’, I [91,92]), here they emerge from

modeling known physiological interactions.

As well as having a role in state transition dynamics, Orx

controls the dynamics of all state transitions in the model,

including naps during normal wake periods and awakenings

during normal sleep periods. We first note that lasting changes of

state could only occur in the original Phillips-Robinson model for

the small range of drives, Dv, in the bistable region, due to a

transient external stimulus, for example. By contrast, the new

model is able to stabilize lasting changes of state when the system is

not in the bistable region due to Orx, which activates to stabilize

wake (increasing Dm), and deactivates to stabilize sleep (decreasing

Dm) on a timescale tx. Thus, although changes in state can be

produced by external drives acting on the relatively short timescale

of tv and tm, the system can remain in the new state after the

external stimulus is removed if it persists on a timescale that is

sufficiently long to change the activity of Orx (i.e., longer than ttx).

Intuitively, this behavior could correspond to relative difficulty

returning to sleep after awakening in the night for more than a

brief duration ( ttx),because this arousal persists for sufficiently long

to activate Orx, stabilizing the wake state and preventing a rapid

return back to sleep. Incorporating an excitatory input from Orx

to MA in the model hence provides a more flexible framework for

modeling state changes, with the time constant tx constituting a

key timescale for both sleep inertia, and the stabilization of

prolonged naps during wake and awakenings during sleep.

Summary and Conclusion

In this work, a new model of sleep-wake physiology was developed

that includes Orx. Using established physiological knowledge, the

model addresses a key shortcoming in current understanding of

narcolepsy by providing a clear physiological explanation of how

arousal state instability stems from Orx loss. A physiologically

plausible set of parameters is able to reproduce previously reported

sleep-wake behavior, explain many features of the narcoleptic

phenotype, and make new predictions. The main results are as follows:

(i) The new model produces realistic dynamics, including

firing rates, relevant drives, and the temporal organization

of sleep and wake periods.

(ii) Fragmented sleep-wake time series characteristic of the

narcoleptic phenotype are generated by simulating a

reduction in orexin levels, yielding reduced daytime

arousal with a constant daily total duration of sleep,

without altering any other parameters or drives.

(iii) The model predicts a shift of the sleep-wake schedule

toward a morning chronotype with reduction in orexin

levels, a prediction that may have relevance in under-

standing the increase in morningness and sleep-wake

fragmentation with aging.

(iv) While previous models have captured sleep inertia using ad

hoc processes, an asymmetry between sleep-to-wake and

wake-to-sleep transitions is predicted to result from adding

Orx to the model, producing sleep inertia on the timescale

of Orx dynamics, tx. This timescale is shown to affect all

state transitions, including naps during normal wake

periods and awakenings during normal sleep periods.

Existing physiologically based models of sleep-wake dynamics

have captured some elements of the role of Orx using alternative

approaches. Unlike other models, our approach builds from a

simplified model of the core physiology and does not attempt to

include everything. This approach has the advantage of being able

to model large networks of individual neurons as interacting

populations, and producing easily-interpretable dynamics that

reproduce many features of narcoleptic dynamics. In one model of

mouse sleep-wake behavior by Diniz Behn et al. [30], Orx was

modeled as a state-dependent modulation of the inhibition of the

VLPO by wake-active neuronal populations using a saturating

mathematical form that mimics Orx activation on a timescale of

minutes or longer. This form ensures that Orx does not affect brief

arousals, but only activates during extended wake periods (lasting

longer than 1 min) [30,31]. Orx plays a qualitatively similar role in

our model, but the dynamics result from directly modeling its

interactions with other neuronal populations, including circadian

input, which were not included in their model [30,31]. Another

physiologically based sleep model was proposed by Rempe et al.

[33], that includes a similar set of neuronal populations and

interactions as modeled here, but also included REM-off and REM-

on populations, the eVLPO, and used a Morris-Lecar system to

model each population as if it were an individual, representative cell.

Their model includes Orx as a drive to monoaminergic nuclei that

is, by construction, ‘switched on’ during wake (when it relays a

purely circadian variation), and ‘switched off’ during sleep, whereas

in our model Orx is included as a neuronal population with its own

dynamics, more closely representing this aspect of the known

physiology. The Rempe et al. [33] model successfully produced

additional cycles between arousal states when removing the

influence of Orx, but a relatively small number of features of the

narcoleptic phenotype were reproduced.

Future modeling work could attempt to capture and account for

the considerable inter-individual variation in narcoleptic symptoms

[15] by relating changes in sleep-wake dynamics to changes in

underlying model parameters (including nmx, Am, and s, which all

affect the rate of state transitions) using hypnograms recorded from

narcoleptic dogs [93], mice [94], and humans [22], for example.

Fitting the model to individual data may allow us to infer the degree

of Orx loss, for example, with potential to recommend pharmaco-

logical or behavioral treatments to individuals. The model’s increased

flexibility to simulate state changes also makes it well placed to

investigate the statistics of wake and sleep bout durations, a subject

that has received much attention [95]. This model could include

pharmaceutical agents, as has been demonstrated for caffeine in the

original Phillips-Robinson model [40]. For example, orexin receptor

antagonists such as suvorexant [96] could be modeled straightfor-

wardly, or modafinil could be modeled as increasing norepine-

phrinergic inhibition of the VLPO [97]. The model introduced here

is thus flexible and well-placed to contribute to a unified

understanding of a wide range of sleep-wake phenomena in terms

of a simplified representation of the core underlying physiology.

Supporting Information

File S1 Additional modeling details. This supplementary

file contains additional mathematical detail of our the model, how

its parameters have been constrained, a brief application to sleep

deprivation, and a description of our heuristic for labeling ‘sleep’

and ‘wake’ periods.

(PDF)
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