7,019 research outputs found
Recommended from our members
The Impact of Covid-19 on Future Higher-Age Mortality
Covid-19 has predominantly affected mortality at high ages. It kills by inflaming and clogging the air sacs in the lungs, depriving the body of oxygen ‒ inducing hypoxia ‒ which closes down essential organs, in particular the heart, kidneys and liver, and causes blood clots (which can lead to stroke or pulmonary embolism) and neurological malfunction.
Evidence from different countries points to the fact that people who die from Covid-19 are often, but not always, much less healthy than the average for their age group. This is true for England & Wales – the two countries we focus on in this study. The implication is that the years of life lost through early death are less than the average for each age group, with how much less being a source of considerable debate. We argue that many of those who die from coronavirus would have died anyway in the relatively near future due to their existing frailties or co-morbidities. We demonstrate how to capture this link to poorer-than-average health using a model in which individual deaths are ‘accelerated’ ahead of schedule due to Covid-19. The model structure and its parameterization build on the observation that Covid-19 mortality by age is approximately proportional to all-cause mortality. This, in combination with current predictions of total deaths, results in the important conclusion that, everything else being equal, the impact of Covid-19 on the mortality rates of the surviving population will be very modest. Specifically, the degree of anti-selection is likely to be very small, since the life expectancy of survivors does not increase by a significant amount over pre-pandemic levels.
We also analyze the degree to which Covid-19 mortality varies with socio-economic status. Headline statistics suggest that the most deprived groups have been disproportionately affected by Covid-19. However, once we control for regional differences in mortality rates, Covid-19 deaths in both the most and least deprived groups are also proportional to the all-cause mortality of these groups. However, the groups in between have approximately 10-15% lower Covid-19 deaths compared with their all-cause mortality.
We argue that useful lessons about the potential pattern of accelerated deaths from Covid-19 can be drawn from examining deaths from respiratory diseases, especially at different age ranges. We also argue that it is possible to draw useful lessons about volatility spikes in Covid-19 deaths from examining past seasonal flu epidemics. However, there is an important difference. Whereas the spikes in seasonal flu increase with age, our finding that Covid-19 death rates are approximately proportional to all-cause mortality suggests that any spike in Covid-19 mortality in percentage terms would be similar across all age ranges.
Finally, we discuss some of the indirect consequences for future mortality of the pandemic and the ‘lockdown’ measures governments have imposed to contain it. For example, there is evidence that some surviving patients at all ages who needed intensive care could end up with a new impairment, such as organ damage, which will reduce their life expectancy. There is also evidence that many people in lockdown did not seek a timely medical assessment for a potential new illness, such as cancer, or deferred seeking treatment for an existing serious illness, with the consequence that non-Covid-19-related mortality rates could increase in future. Self-isolation during lockdown has contributed to an increase in alcohol and drug consumption by some people which might, in turn, reduce their life expectancy. If another consequence of the pandemic is a recession and/or an acceleration in job automation, resulting in long-term unemployment, then this could lead to so-called ‘deaths of despair’ in future. Other people, by contrast, might permanently change their social behaviour or seek treatments that delay the impact or onset of age-related diseases, one of the primary factors that make people more susceptible to the virus – both of which could have the effect of increasing their life expectancy. It is, however, too early to quantify these possibilities, although it is conceivable that these indirect consequences could have a bigger impact on future average life expectancy than the direct consequences measured by the accelerated deaths model
Retrieval of Volcanic and Man-Made Stratospheric Aerosols from Orbital Polarimetric Measurements
Stratospheric aerosols that are caused by a major volcanic eruption can serve as a valuable test of global climate models, as well as severely complicate tropospheric-aerosol monitoring from space. In either case, it is highly desirable to have accurate global information on the optical thickness, size, and composition of volcanic aerosols. We report sensitivity study results, which analyze the implications of making precise multi-angle photopolarimetric measurements in a 1.378-m spectral channel residing within a strong water-vapor absorption band. We demonstrate that, under favorable conditions, such measurements would enable near-perfect retrievals of the optical thickness, effective radius, and refractive index of stratospheric aerosols. Besides enabling accurate retrievals of volcanic aerosols, such measurements can also be used to monitor man-made particulates injected in the stratosphere for geoengineering purposes
A New Look at Mode Conversion in a Stratified Isothermal Atmosphere
Recent numerical investigations of wave propagation near coronal magnetic
null points (McLaughlin and Hood: Astron. Astrophys. 459, 641,2006) have
indicated how a fast MHD wave partially converts into a slow MHD wave as the
disturbance passes from a low-beta plasma to a high-beta plasma. This is a
complex process and a clear understanding of the conversion mechanism requires
the detailed investigation of a simpler model. An investigation of mode
conversion in a stratified, isothermal atmosphere, with a uniform, vertical
magnetic field is carried out, both numerically and analytically. In contrast
to previous investigations of upward-propagating waves (Zhugzhda and Dzhalilov:
Astron. Astrophys. 112, 16, 1982a; Cally: Astrophys. J. 548, 473, 2001), this
paper studies the downward propagation of waves from a low-beta to high-beta
environment. A simple expression for the amplitude of the transmitted wave is
compared with the numerical solution.Comment: 14 pages, 6 figure
Numerical simulation of unconstrained cyclotron resonant maser emission
When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD
Perspectives on next steps in classification of oro-facial pain - Part 3: biomarkers of chronic oro-facial pain - from research to clinic
The purpose of this study was to review the current status of biomarkers used in oro-facial pain conditions. Specifically, we critically appraise their relative strengths and weaknesses for assessing mechanisms associated with the oro-facial pain conditions and interpret that information in the light of their current value for use in diagnosis. In the third section, we explore biomarkers through the perspective of ontological realism. We discuss ontological problems of biomarkers as currently widely conceptualised and implemented. This leads to recommendations for research practice aimed to a better understanding of the potential contribution that biomarkers might make to oro-facial pain diagnosis and thereby fulfil our goal for an expanded multidimensional framework for oro-facial pain conditions that would include a third axis
Modelling stochastic bivariate mortality
Stochastic mortality, i.e. modelling death arrival via a jump process with stochastic intensity, is gaining increasing reputation as a way to represent mortality risk. This paper represents a first attempt to model the mortality risk of couples of individuals, according to the stochastic intensity approach.
On the theoretical side, we extend to couples the Cox processes set up, i.e. the idea that mortality is driven by a jump process whose intensity is itself a stochastic process, proper of a particular generation within each gender. Dependence between the survival times of the members of a couple is captured by an Archimedean copula.
On the calibration side, we fit the joint survival function by calibrating separately the (analytical) copula and the (analytical) margins. First, we select the best fit copula according to the methodology of Wang and Wells (2000) for censored data. Then, we provide a sample-based calibration for the intensity, using a time-homogeneous, non mean-reverting, affine process: this gives the analytical marginal survival functions. Coupling the best fit copula with the calibrated margins we obtain, on a sample generation, a joint survival function which incorporates the stochastic nature of mortality improvements and is far from representing independency.On the contrary, since the best fit copula turns out to be a Nelsen one, dependency is increasing with age and long-term dependence exists
Priorities, policies and (time)scales : the delivery of emissions reductions in the UK transport sector
Peer reviewedPreprin
Raman backscattering saturation due to coupling between ωp and 2ωp modes in plasma
Raman backscattering (RBS) in plasma is the basis of plasma-based amplifiers and is important in laser-driven fusion experiments. We show that saturation can arise from nonlinearities due to coupling between the fundamental and harmonic plasma wave modes for sufficiently intense pump and seed pulses. We present a time-dependent analysis that shows that plasma wave phase shifts reach a maximum close to wavebreaking. The study contributes to a new understanding of RBS saturation for counter-propagating laser pulses
Stability and transport of parallel velocity shear driven mode with negative magnetic shear
The linear and quasilinear behavior of the drift-like perturbation with a parallel velocity shear is studied in a sheared slab geometry. Full analytic studies show that when the magnetic shear has the same sign as the second derivative of the parallel velocity with respect to the radial coordinate, the linear mode may become unstable and turbulent momentum transport increases. On the other hand, when the magnetic shear has opposite sign to the second derivative of the parallel velocity, the linear mode is completely stabilized and turbulent momentum transport reduces
Observations of red-giant variable stars by Aboriginal Australians
Aboriginal Australians carefully observe the properties and positions of
stars, including both overt and subtle changes in their brightness, for
subsistence and social application. These observations are encoded in oral
tradition. I examine two Aboriginal oral traditions from South Australia that
describe the periodic changing brightness in three pulsating, red-giant
variable stars: Betelgeuse (Alpha Orionis), Aldebaran (Alpha Tauri), and
Antares (Alpha Scorpii). The Australian Aboriginal accounts stand as the only
known descriptions of pulsating variable stars in any Indigenous oral tradition
in the world. Researchers examining these oral traditions over the last
century, including anthropologists and astronomers, missed the description of
these stars as being variable in nature as the ethnographic record contained
several misidentifications of stars and celestial objects. Arguably,
ethnographers working on Indigenous Knowledge Systems should have academic
training in both the natural and social sciences.Comment: The Australian Journal of Anthropology (2018
- …
