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The linear and quasilinear behavior of the drift-like perturbation with a parallel velocity shear is
studied in a sheared slab geometry. Full analytic studies show that when the magnetic shear has the
same sign as the second derivative of the parallel velocity with respect to the radial coordinate, the
linear mode may become unstable and turbulent momentum transport increases. On the other hand,
when the magnetic shear has opposite sign to the second derivative of the parallel velocity, the linear
mode is completely stabilized and turbulent momentum transport reduces. ©2000 American
Institute of Physics.@S1070-664X~00!01203-9#

I. INTRODUCTION

Arguably the most remarkable story of fusion research
over the past decade is the discovery of the enhanced reverse
shear modes~ERS modes! in Tokamak Fusion Test Reactor
~TFTR!1 and the negative central magnetic shear modes
~NCS modes! in DIII-D. 2 It is not often that a system self-
organizes to a higher energy state with such a large reduction
of turbulence and transport when an additional source of free
energy is applied to it.3 It is usually believed that the ERS or
NCS configurations can provide the characteristics desirable
for a fusion reactor.4

The understanding of the formation of transport barriers
in the ERS or NCS plasma configurations is therefore funda-
mental to the development of techniques to control such bar-
riers for tailoring profiles and for improving operating re-
gimes further. This is especially significant because it is now
widely accepted that the negative magnetic shear is not the
only factor needed for the transport reduction in the ERS or
NCS modes. Some of the clearest evidence comes from the
comparison of the RS~reverse shear! and ERS~enhanced
reverse shear! transition data in TFTR.5 It shows that the RS
phase is not necessarily an ERS phase and some other factor
is needed to explain the transition. Theoretical study also
indicates that the reversal of magnetic shear alone might
have a little effect on the ion temperature gradient-type
~ITG-type! microinstabilities.6

Most recently, theE3B shear stabilization mechanism
has been proposed to explain the core transport barriers
formed in plasmas with negative or reverse magnetic shear
regimes.3 It is believed that the change in the radial electric

field in the core is produced in a number of ways, for ex-
ample, by toroidal flow (vf i) ~Ref. 7! and/or by pressure
gradient (¹pi) ~Ref. 5! and more recently by poloidal flow
(vu i).

8 However, while thisE3B shear stabilization mecha-
nism alone can satisfactorily explain the confinement im-
provement in the edge, it may not be an obvious explanation
for the core confinement improvement in the ERS and NCS
plasma.9 For example, the formation of the ERS mode in
TFTR has been reported5 at values ofgE3B ~E3B shearing
rate!, as much as a factor of 3 belowgmax ~the maximum
linear growth rate!, while for the suppression of turbulence-
induced transport the conditiongE3B>gmax needs to be sat-
isfied~although, this criterion of shear stabilization is only an
approximate estimate!. It is therefore natural that an expla-
nation of these experimental results should be sought in the
effects such optimized magnetic configurations have on mi-
croinstabilities and on the consequent transport.

In a recent important work10 the nonlinear behavior of
the parallel velocity shear~PVS! instability has been consid-
ered in a sheared slab geometry. By employing numerical
procedures and by physical insight, the conclusion was
drawn that when the magnetic shear has the same sign as the
second derivative of the parallel velocity with respect to the
radial coordinate the fluctuations grow, and the reason for
this enhancement in the fluctuation level is attributed to the
vortex merging that occurred in the nonlinear state. In this
work, we show that the sign of the magnetic shear also
strongly effects the linear growth of the mode and quasilin-
ear transport level. When the magnetic shear has the same
sign as the second derivative of the parallel flow with respect
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to the radial coordinate, the linear mode may become un-
stable and turbulent momentum transport increases. Addi-
tionally, we show when the magnetic shear has opposite sign
to the second derivative of the parallel velocity, the linear
mode is completely stabilized and turbulent momentum
transport reduces. This result therefore shows that it is the
relative sign of the second radial derivative of the equilib-
rium parallel flow with respect to the magnetic shear which
may be the key factor for the enhanced reverse shear transi-
tion.

II. LINEAR STABILITY

We will study the short-wavelength drift-like perturba-
tion with a parallel velocity shear. By considering the flute-
like perturbations (ki!k') with a parallel velocity shear, we
intend to address an additional key issue of whether the de-
stabilization mechanism found in Ref. 10 is a general feature
of all modes with structure parallel to the magnetic field.
This will then allow us to investigate if the new mechanism
could indeed play a role in affecting the turbulence driven by
these modes and consequently will provide us with some
definitive insight into its possible role in the reverse shear
discharges. We adopt a two-fluid theory in a sheared slab
geometry,B5B0@z1(x/Ls)y#, whereLs is the scale length
of magnetic shear. Thex, y, andz directions in the sheared
slab geometry are defined as the radial, poloidal, and toroidal
directions in the tokamak configuration. We assume a back-
ground plasma with all inhomogeneities only in the radial
direction, where perturbations have the formf(x,t)
5f(x)exp@i(kyy1kzz2vt)#. For simplicity, we take the ions
to be cold and omit the electron temperature gradient. We
ignore finite gyroradius effects by limiting consideration to
the wavelength domaink'r i!1, wherer i is the ion gyrora-
dius. We then write down the linearized equations of conti-
nuity and parallel motion for the ions as11

]ni

]t
1¹'•@N~x!V' i #1¹ i@~N1n!~Vi01Vi i !#50,

miniF]Vi i

]t
1~VE1Vi i !•¹Vi0G52eni¹ if.

Here,

¹'5 ikyêy1êx

d

dx
,

V' i5VE1Vpi ,

VE52c~¹'f3B0!/B0
2,

Vpi5 i @c~v2kiVi0~x!!/B0vci#¹'f,

Ti50.

Herex is the distance from the mode rational surface defined
by k•B050, andVi0 is the equilibrium parallel velocity. All
other symbols are assumed to have the usual meaning unless
otherwise stated explicitly. It is important to mention at this
stage that in this work we make no attempt to speculate
about source of these flows, although a strongly peaked ion
velocity parallel to the magnetic field is observed to coexist

in tokamaks in the region where the plasma confinement is
improved.2,7,12 Parallel flow,Vi0 , has therefore two effects.
First, it introduces a Doppler shift,kiVi0(x), in all time de-
rivatives and second, an extra term,VE•¹Vi0(x), represent-
ing radial convection of ion momentum. It is the second term
which makes the effect of parallel flow shear completely
different from that of the perpendicular flow shear.11 We
eliminate the Doppler shift by performing Galilean transfor-
mations in theêi direction. Now, using quasineutrality and
the usual low-frequency and long wavelength assumptions,
we obtain the radial eigenvalue equation,

rs
2S d2

dx22ky
2Df2S 12

ve* 1 ig

v
1

dVi0

dx

kyrs

v

x

xs
2

x2

xs
2Df50,

~1!

where

rs
25

Cs
2

vci
2 , Cs

25
Te

mi
, ve* ~x!52kyrsCs /Ln~x!,

g5ve* d, xs
25

v2

ki8
2Cs

2 ,

ki85ky /Ls , ki5ki8x, Ln~x!215ud ln N~x!/dxu.

Here,d takes account of the dissipative effects of the elec-
tron Landau resonance and the trapped electrons, etc.

To model the equilibrium parallel velocity we assume a
simple general case of the variation ofVi(x) with the radial
distancex,

Vi0~x!5Vi001Vi08 x1 1
2 Vi09 x2,

where

Vi08 5
Vi00

Lv1
,

1

2
Vi09 5

Vi00

Lv2
2 ,

whereVi00 is the velocity characterizing flow. In considering
the problem with a spatial variation ofve* (x), we treat the
simple case in whichve* (x) is to be peaked at the mode
rational surface defined byx50 and has a parabolic profile:
ve* (x)[v0* (12x2/L

*
2 ), where L* is the density gradient

scale length and will be taken typically;Ln . This is to
ensure that the mode we are investigating is located at the
minimum of (1/Ln(x)) or at the maximum ofdn/dx, which
is the driving term of drift-type modes, and hence we are
considering the most unstable situation. With the velocity
profiles just described, Eq.~1! reduces to

rs
2 d2f

dx2 1~L1Px22Qx!f50, ~2!

where

L5S v0* 1 ig

v
2ky

2rs
221D ,

P5S Ln
2

rs
2Ls

222
Vi00

Cs

Ln
2

Lv2
2

1

Lsrs
2

1

Ln
2D , Q5S Vi00

Cs

Ln
2

Lv1

1

Lsrs
D .

In deriving Eq.~2!, we have assumed the usual drift approxi-
mation, i.e.,v;v0* 5kyV0* , whereV0* 5ursCs /Lnu. We em-
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phasize that these assumptions are made only to facilitate
comparison with the experimental data and no generality
whatsoever is lost thereby.

Equation~2! is a simple Weber equation. Depending on
the sign ofP, we have two types of solution. IfP,0, i.e.,

Ln
2

rs
2Ls

2,2
Vi0

Cs

Ln
2

Lv2
2

1

Lsrs
1

1

Ln
2 , ~3!

solution which satisfies the physical boundary condition, i.e.,
f→0 at x56` is given by

f~x!5f0 expF2
AuPu
2rs

~x2x0!2G , ~4!

wherex05uQu/2uPu. The wave therefore does not propagate
and is intrinsically undamped.

On the other hand, ifP.0, Eq. ~2! has the solution

f~x!5f0 expF2 i
AuPu
2rs

~x1x0!2G . ~5!

Thus we have now a nonlocalized mode carrying energy out-
ward. Because of the convective wave energy leakage, the
perturbation will decay in time in the absence of any energy
source feeding the wave. The wave is therefore damped.

The overall stability of the mode will be determined by
the strength of the driving term modeled by theid term and
is obtained from the dispersion relation,

g,

rsS Ln
2

rs
2Ls

222
Vi00

Cs

Ln
2

Lv2
2

1

Lsrs
2

1

Ln
2D 1/2

v0*

S 11ky
2rs

21
Q2

4PD . ~6!

A few interesting points emerge from relation~6!. First, the
sign of the flow shear has no effect on stability as it occurs
through theQ2 term in ~6!. It can also be concluded by
noting the invariance of Eq.~2! under the combined opera-
tion of reflectionx→2x and change in sign ofQ→2Q.
Second, it is the parallel flow curvature which actually plays
the key role in the stability of the mode. Velocity shear, on
the other hand, shifts the potential but does not affect the
quadratic structure. However, the most important observa-
tion emerging from these studies@for example, see relation
~3!# is that when the magnetic shear has the same sign as the
parallel flow curvature, i.e., for positive magnetic shear (Ls

.0), parallel flow curvature acts to destabilize the mode.
This therefore shows that the increase in the level of fluctua-
tions observed by McCarthy and Maurer,10 when the sign of
the second radial derivative of the parallel flow is the same
as the magnetic shear, can possibly be explained in terms of
stabilization/destabilization of the linear modes. Another im-
portant outcome of our analysis is that it shows that, as
speculated by McCarthy and Maurer,10 this mechanism of
destabilization by the parallel flow curvature is a general
feature of modes having a finiteki . However, we will later
describe the fluctuations and radial transport in detail.

Now, relation~3! also allows us to make another addi-
tional important observation. We notice that for negative
magnetic shear configuration (Ls,0), i.e., when the mag-

netic shear has the opposite sign to the second derivative of
the parallel flow with respect to the radial coordinatex, the
parallel flow curvature acts to stabilize the mode. Flow cur-
vature now forms an additional antiwell which pushes the
wave function away from the mode rational surface, thereby
enhancing stabilization. The possible role of such a magnetic
configuration on the fluctuations and radial transport and its
subsequent relevance to the ERS and NCS plasma will be
addressed in the coming sections.

III. QUASILINEAR TRANSPORT

To see what these studies on the linear mode stability
mean to the plasma transport we will now, as an example,
derive analytic formulas for the quasilinear radial flux of
momentum. For this we note that the general expression for
the perturbed electrostatic potential is given by

f5ReF(
ky

f0f~x!exp~ ikyy2 ivt !G .
In the representation off we usef0 to characterize the
root-mean-square~rms! fluctuation level andf(x) the nor-
malized wave function. TheE3B drift velocity is

ṽx52
c

B

]f

]y
, ṽy5

c

B

]f

]x
, ~7!

whereB is the toroidal magnetic field andc is the speed of
light. Now we introduce the two components of the micro
Reynolds stress that measure the radial flux of the perpen-
dicular momentum,

pxy5 ṽx* ṽy1 ṽxṽy* , ~8!

where* stands for complex conjugate. In writing Eq.~8!, we
leave implicit the summation over all poloidal mode num-
bers and all rational surfaces determined by the toroidal
mode number spectra. It is straightforward to obtain the ana-
lytical expression of Eq.~8!, using Eqs.~5! and ~8! as fol-
lows:

pxy5uf0u2
c2

rsB
2 2kyAuPu~x1x0!, ~9!

which at the reference mode rational surface can be simpli-
fied to

pxy5uf0u2
c2

rsB
2 ky

uQu

AuPu
. ~10!

With this simplified formula we are now in a position to see
what effects the parallel flow curvature has on the radial flux
with the change of its relative sign with the magnetic shear.
We notice that the quantity which changes with the relative
sign of the parallel flow curvature and the magnetic shear is
P. Now for the normal operating phases of the tokamak op-
eration, the relative magnitudes of the three terms in the
expression ofP usually areLn

2/rs
2Ls

2@2(Vi00/Cs)(Ln
2/Lv2

2 )
3(1/Lsrs);1/Ln

2. Hence, it is clear that for the positive
magnetic shear configuration (Ls.0), i.e., when the mag-
netic shear has the same sign as the parallel flow curvature,
the radial flux will grow to a larger level~due to decrease of
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AP) than if there were no parallel flow curvature. This there-
fore explains the observation of McCarthy and Maurer.10

However, our analysis also allows us to make another addi-
tional important observation. We notice from Eq.~10! that
for the negative magnetic shear configuration (Ls,0), i.e.,
when the magnetic shear has the opposite sign to the second
derivative of the parallel flow, the parallel flow curvature
acts to reduce the radial flux~due to increase ofAP). This
possibly has a crucial role in explaining the ERS and NCS
discharges.

This effect is shown on a quantitative level in Table I
which shows the normalized radial flux as calculated from
Eq. ~10! with various directions of the magnetic shear. For
calculating the radial flux we have assumedLn;10, Lv;5,
rs;0.1 cm, andVi00/Cs;1/10. From this table, one can
clearly see that when the shear is positive i.e., when the sign
of the parallel flow curvature is the same as the magnetic
shear, the radial flux is greater than if there were no parallel
flow curvature (Lv25`). On the other hand, when the shear
is negative, i.e., when the sign of the parallel flow curvature
is in the opposite direction of the magnetic shear, the radial
flux is less than if there were no parallel flow curvature. It is
important to notice that while the effect of the parallel flow
curvature is robust in the case of the linear mode stability, its
role in the case of radial flux is rather modest. This observa-
tion is similar to what was made in Ref. 10. This apparent
disparity can be attributed to the fact that in the case of the
linear mode stability, the contribution of the parallel flow
curvature comes throughP, whereas that in the radial flux
comes throughAP. Before leaving this section it is impor-
tant to mention that one can similarly calculate the radial flux
of the parallel momentumpx,i from the equationpxi

5 ṽx* ṽ i1 ṽxṽ i* , where in the quasilinear approximationṽ i

5(eky /Lsmiv)xf. Proceeding as before, one can then
reach a conclusion similar to that for the perpendicular coun-
terpart.

Finally, having shown the reduction of flux for the nega-
tive magnetic shear in the preceding sections, we will now
address an important question as to what extent this reduc-
tion in the radial flux can be continued by varying the scale
length of the parallel flow curvature. We show this in Table
II. The parameters values chosen for calculating the fluxes
are the same as assumed in Table I. It is clear from Table II
that, as expected, the radial flux reduces with the decrease of
the scale length of the parallel flow curvature, the lower limit
of which will be determined by the threshold of excitation of

the Kelvin–Helmholtz~KH! instability. However, it has been
noted by Biglariet al.13 that in order for KH to be excited,
the conditionLv(;Lv2),LJ needs to be satisfied, whereLJ

is the width of the resistive layer and is typically a few mil-
limeters for the DIII-D type machine. So, Table II shows that
a large reduction in the radial flux is indeed possible by
suitably tailoring the flow profile. Another intriguing aspect
of Table II is that it also shows that as the scale length of the
parallel flow curvature increases, the radial flux gradually
increases before it finally reaches a state when the flux is no
longer sensitive to the variation of the flow profile.

IV. CONCLUSION

In conclusion, we have identified the relative sign of the
second radial derivative of the equilibrium parallel flow with
respect to the magnetic shear as the key factor for the en-
hanced reverse shear transition. Our full analytic studies
show that when the magnetic shear has the same sign as the
second derivative of the parallel velocity with respect to the
radial coordinate, the linear mode may become unstable and
turbulent momentum transport increases. On the other hand,
when the magnetic shear has an opposite sign to the second
derivative of the parallel velocity, the linear mode is com-
pletely stabilized and turbulent momentum transport reduces.
It is shown that a large reduction in the momentum transport
is possible by suitably tailoring the parallel flow profile.
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TABLE I. Effect of relative sign of flow curvature and magnetic shear on
radial flux.

Ls Lv2 Flux

1140 cm 5 cm 0.212
1140 cm ` 0.197
2140 cm 5 cm 0.186

TABLE II. Reduction of radial flux by varying flow curvature.

Ls Lv2 Flux

2140 cm 11 cm 0.196
2140 cm 9 cm 0.194
2140 cm 7 cm 0.192
2140 cm 5 cm 0.186
2140 cm 3 cm 0.172
2140 cm 2 cm 0.150
2140 cm 1 cm 0.101
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