79 research outputs found

    Reliable material characterisation at low x-ray energy through the phase-attenuation duality

    Get PDF
    We present a comparison of between two polychromatic X-ray imaging techniques used to characterise materials: dual energy (DE) attenuation and phase-attenuation (PA), the latter being implemented via a scanning-based Edge Illumination system. The system-independent method to extract electron density and effective atomic number developed by S.G. Azevedo et al IEEE Transactions on nuclear science, Vol. 63, 341 (2016) - SIRZ - is employed for the analysis of planar images, with the same methodology being used for both approaches. We show PA to be more reliable at low energy X-ray spectra (40 kVp), where conventional DE breaks down due to insufficient separation of the energies used in measurements, and to produce results comparable with “standard” DE implemented at high energy (120 kVp), therefore offering a valuable alternative in applications where the use of high x-ray energy is impractical

    Increased material differentiation through multi-contrast x-ray imaging: a preliminary evaluation of potential applications to the detection of threat materials

    Full text link
    Most material discrimination in security inspections is based on dual-energy x-ray imaging, which enables the determination of a material's effective atomic number (Zeff) as well as electron density and its consequent classification as organic or inorganic. Recently phase-based "dark-field" x-ray imaging approaches have emerged that are sensitive to complementary features of a material, namely its unresolved microstructure. It can therefore be speculated that their inclusion in the security-based imaging could enhance material discrimination, for example of materials with similar electron densities and Z eff but different microstructures. In this paper, we present a preliminary evaluation of the advantages that such a combination could bear. Utilising an energy-resolved detector for a phase-based dark-field technique provides dual-energy attenuation and dark-field images simultaneously. In addition, since we use a method based on attenuating x-ray masks to generate the dark-field images, a fifth (attenuation) image at a much higher photon energy is obtained by exploiting the x-rays transmitted through the highly absorbing mask septa. In a first test, a threat material is imaged against a non-threat one, and we show how their discrimination based on maximising their relative contrast through linear combinations of two and five imaging channels leads to an improvement in the latter case. We then present a second example to show how the method can be extended to discrimination against more than one non-threat material, obtaining similar results. Albeit admittedly preliminary, these results indicate that significant margins of improvement in material discrimination are available by including additional x-ray contrasts in the scanning process

    Optimization of multipoint phase retrieval in edge illumination X-ray imaging: A theoretical and experimental analysis

    Get PDF
    Purpose: In this work, an analytical model describing the noise in the retrieved three contrast channels, transmission, refraction, and ultra small-angle scattering, obtained with edge illumination X-ray phase-based imaging system is presented and compared to experimental data. Methods: In EI, images acquired at different displacements of the presample mask (i.e., different illumination levels referred to as points on the “illumination curve”), followed by pixel-wise curve fitting, are exploited to quantitatively retrieve the three contrast channels. Therefore, the noise in the final image will depend on the error associated with the fitting process. We use a model based on the derivation of the standard error on fitted parameters, which relies on the calculation of the covariance matrix, to estimate the noise and the cross-channel correlation as a function of the position of the sampling points. In particular, we investigated the most common cases of 3 and 5 sampling points. In addition, simulations have been used to better understand the role of the integration time for each sampling point. Finally, the model is validated by comparison with the experimental data acquired with an edge illumination setup based on a tungsten rotating anode X-ray source and a photon counting detector. Results: We found a good match between the predictions of the model and the experimental data. In particular, for the investigated cases, an arrangement of the sampling points leading to minimum noise and cross-channel correlation can be found. Simulations revealed that, given a fixed overall scanning time, its distribution into the smallest possible number of sampling points needed for phase retrieval leads to minimum noise thanks to higher statistics per point. Conclusions: This work presents an analytical model describing the noise in the various contrast channels retrieved in edge illumination as a function of the illumination curve sampling. In particular, an optimal sampling scheme leading to minimum noise has been determined for the case where 3 or 5 sampling points are used, which represent two of the most common acquisition schemes. In addition, the correlation between noise in the different channels and the role of the number of points and exposure time have been also investigated. In general, our results suggest a series of procedures that should be followed in order to optimize the experimental acquisitions

    A laboratory-based beam tracking x-ray imaging method achieving two-dimensional phase sensitivity and isotropic resolution with unidirectional undersampling

    Get PDF
    Beam tracking X-ray Phase Contrast Imaging is a “Shack-Hartmann” type approach which uses a pre-sample mask to split the x-rays into “beamlets” which are interrogated by a detector with sufficient resolution. The ultimate spatial resolution is determined by the size of the mask apertures, however achieving this resolution level requires “stepping” the sample or the mask in increments equal to the aperture size (“dithering”). If an array of circular apertures is used (which also provides two-dimensional phase sensitivity) instead of long parallel slits, this stepping needs to be carried out in two directions, which lengthens scan times significantly. We present a mask design obtained by offsetting rows of circular apertures, allowing for two-dimensional sensitivity and isotropic resolution while requiring sample or mask stepping in one direction only. We present images of custom-built phantoms and biological specimens, demonstrating that quantitative phase retrieval and near aperture-limited spatial resolutions are obtained in two orthogonal directions

    The effect of a variable focal spot size on the contrast channels retrieved in edge illumination x-ray phase contrast imaging

    Get PDF
    Multi-modal X-ray imaging allows the extraction of phase and dark-field (or “Ultra-small Angle Scatter”) images alongside conventional attenuation ones. Recently, scan-based systems using conventional sources that can simultaneously output the above three images on relatively large-size objects have been developed by various groups. One limitation is the need for some degree of spatial coherence, achieved either through the use of microfocal sources, or by placing an absorption grating in front of an extended source. Both these solutions limit the amount of flux available for imaging, with the latter also leading to a more complex setup with additional alignment requirements. Edge-illumination partly overcomes this as it was proven to work with focal spots of up to 100 micron. While high-flux, 100 micron focal spot sources do exist, their comparatively large footprint and high cost can be obstacles to widespread translation. A simple solution consists in placing a single slit in front of a large focal spot source. We used a tunable slit to study the system performance at various effective focal spot sizes, by extracting transmission, phase and dark-field images of the same specimens for a range of slit widths. We show that consistent, repeatable results are obtained for varying X-ray statistics and effective focal spot sizes. As the slit width is increased, the expected reduction in the raw differential phase peaks is observed, compensated for in the retrieval process by a broadened sensitivity function. This leads to the same values being correctly retrieved, but with a slightly larger error bar i.e. a reduction in phase sensitivity. Concurrently, a slight increase in the dark-field signal is also observed

    Enhanced detection of threat materials by dark-field x-ray imaging combined with deep neural networks

    Get PDF
    X-ray imaging has been boosted by the introduction of phase-based methods. Detail visibility is enhanced in phase contrast images, and dark-field images are sensitive to inhomogeneities on a length scale below the system’s spatial resolution. Here we show that dark-field creates a texture which is characteristic of the imaged material, and that its combination with conventional attenuation leads to an improved discrimination of threat materials. We show that remaining ambiguities can be resolved by exploiting the different energy dependence of the dark-field and attenuation signals. Furthermore, we demonstrate that the dark-field texture is well-suited for identification through machine learning approaches through two proof-of-concept studies. In both cases, application of the same approaches to datasets from which the dark-field images were removed led to a clear degradation in performance. While the small scale of these studies means further research is required, results indicate potential for a combined use of dark-field and deep neural networks in security applications and beyond

    Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms

    Get PDF
    Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum's evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later

    On the equivalence of the X-ray scattering retrieval with beam tracking and analyser-based imaging using a synchrotron source

    Get PDF
    X-ray phase contrast imaging (XPCI) methods give access to contrast mechanisms that are based on the refractive properties of matter on top of the absorption coefficient in conventional x-ray imaging. Ultra small angle x-ray scattering (USAXS) is a phase contrast mechanism that arises due to multiple refraction events caused by physical features of a scale below the physical resolution of the used imaging system. USAXS contrast can therefore give insight into subresolution structural information, which is an ongoing research topic in the vast field of different XPCI techniques. In this study, we quantitatively compare the USAXS signal retrieved by the beam tracking XPCI technique with the gold standard of the analyzer based imaging XPCI technique using a synchrotron x-ray source. We find that, provided certain conditions are met, the two methods measure the same quantity

    Femtosecond multimodal imaging with a laser-driven X-ray source

    Get PDF
    Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot

    Magnetically Guided Protein Transduction by Hybrid Nanogel Chaperones with Iron Oxide Nanoparticles

    Full text link
    Protein pharmaceuticals show great therapeutic promise, but effective intracellular delivery remains challenging. To address the need for efficient protein transduction systems, we used a magnetic nanogel chaperone (MC): a hybrid of a polysaccharide nanogel, a protein carrier with molecular chaperoneâ like properties, and iron oxide nanoparticles, enabling magnetically guided delivery. The MC complexed with model proteins, such as BSA and insulin, and was not cytotoxic. Cargo proteins were delivered to the target HeLa cell cytosol using a magnetic field to promote movement of the protein complex toward the cells. Delivery was confirmed by fluorescence microscopy and flow cytometry. Delivered βâ galactosidase, inactive within the MC complex, became enzymatically active within cells to convert a prodrug. Thus, cargo proteins were released from MC complexes through exchange interactions with cytosolic proteins. The MC is a promising tool for realizing the therapeutic potential of proteins.Protein delivery! Facile protein transduction was achieved using a hybrid of polysaccharide nanogels with iron oxide nanoparticles. The chaperoneâ like functions of the nanogel and magnetic properties of the iron oxide nanoparticles enabled delivery of functional proteins, while maintaining their innate activities, into target cells.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137312/1/anie201602577_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137312/2/anie201602577.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137312/3/anie201602577-sup-0001-misc_information.pd
    • …
    corecore