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Abstract11

Purpose: In this work, an analytical model describing the noise in the retrieved three12

contrast channels, transmission, refraction and ultra-small angle scattering, obtained13

with edge illumination X-ray phase-based imaging system is presented and compared14

to experimental data.15

Methods: In edge illumination, images acquired at different displacements of the pre-16

sample mask (i.e. different illumination levels referred to as points on the “illumination17

curve”), followed by pixel-wise curve fitting, are exploited to quantitatively retrieve the18

three contrast channels. Therefore, the noise in the final image will depend on the er-19

ror associated with the fitting process. We use a model based on the derivation of the20

standard error on fitted parameters, which relies on the calculation of the covariance21

matrix, to estimate the noise and the cross-channel correlation as a function of the22

position of the sampling points. In particular, we investigated the most common cases23

of three and five sampling points. In addition, simulations have been used to better24

understand the role of the integration time for each sampling point. Finally, the model25

is validated by comparison with the experimental data acquired with an edge illumi-26

nation setup based on a tungsten rotating anode X-ray source and a photon counting27

detector.28

Results: We found a good match between the predictions of the model and the exper-29

imental data. In particular, for the investigated cases, an arrangement of the sampling30

points leading to minimum noise and cross-channel correlation can be found. Simula-31

tions revealed that, given a fixed overall scanning time, its distribution into the smallest32
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possible number of sampling points needed for phase retrieval leads to minimum noise33

thanks to higher statistics per point.34

Conclusions: This work presents an analytical model describing the noise in the edge35

illumination contrast channels as function of the illumination curve sampling. In par-36

ticular, an optimal sampling scheme leading to minimum noise has been determined37

when three or five sampling points are used, which represents the most common ac-38

quisition scheme. In addition, the correlation between noise in the different channels39

and the role of the number of points and exposure time have been also investigated.40

In general, our results suggest a series of procedures that should be followed in order41

to optimize the experimental acquisitions.42
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Introduction43

In conventional X-ray imaging, contrast arises from differences in the absorption coefficients,44

which can be very low when imaging soft tissue specimens, leading to poor signal-to-noise45

ratio (SNR) and excessive dose. Furthermore, staining protocols are often required. Phase46

contrast imaging may provide a viable alternative, through the exploitation of phase vari-47

ations encountered by the X-ray beam when traversing a specimen1,2. In particular, since48

the real part of the complex refractive index (n = 1− δ + iβ) is up to three orders of mag-49

nitude larger than the absorption one at x-ray energies relevant for medical imaging (above50

10 keV), phase imaging can provide greater contrast and better SNR at the same or even51

reduced dose , especially for high resolution applications3,4,5. Currently, the combination52

of phase contrast and tomography at synchrotron radiation facilities delivers high-contrast53

images of soft tissues with micron and sub-micron resolution, which allows volumetric quan-54

titative analyses; the ability to do this non-destructively makes the same specimen available55

for further investigations such as conventional histology6,7. Therefore, X-ray phase contrast56

imaging is becoming increasingly important in the pre-clinical investigation of pathological57

conditions8,9,10. The limited access to synchrotrons currently represents the main limit to58

the widespread application of this technique. For this reason, phase imaging techniques59

based on conventional X-ray sources have been developed, which are typically based on the60

use of optical elements such as absorption and phase gratings11,12. In addition to transmis-61

sion and phase imaging, these techniques provide access to the ultra-small angle scattering62

(or dark-field) signal, which has proven to be useful both for material and medical imaging63

applications13,14. Edge illumination is one of these techniques. It is based on the use of two64

absorption masks to shape the beam into a series of beamlets, and detect a change in their65

propagation direction as a consequence of refraction12,15. Changes in the beamlets’ width66

and intensity are a consequence of ultra-small angle scattering and transmission, respectively.67

The relatively simple implementation and versatility in terms of scanning modes and acces-68

sible spatial resolution levels make edge illumination a promising phase detection scheme69

for clinical applications allowing also single-image retrival approaches16,17,18. The phase sen-70

sitivity is fully described by the illumination curve (IC), which expresses the quantitative71

relationship between the change in beamlet direction and recorded change of intensity on72

the detector19. It is usually Gaussian shaped, and represents the basis for the phase retrieval73

3



which is performed by quantifying the perturbation that the IC undergoes when a sample74

is placed into the beam path20. Quantification is usually achieved by a pixel-wise Gaussian75

fit of the intensity values obtained by displacing one of the masks in a series of positions,76

with and without the sample. Since phase retrieval relies on curve fitting, the noise in the77

final image will depend on the error associated with the fitting process. In this work, we78

present an analysis of the noise in the retrieved transmission, refraction and dark field con-79

trast channels obtained with an edge illumination setup when using multi-point retrieval. A80

theoretical model based on the derivation of the standard error on fitted parameters is de-81

veloped and compared to the experimental data, showing a very good agreement. Different82

experimental conditions, involving the acquisition of three or five input images, have been83

considered, and in each case the positions of the IC sampling points leading to the minimum84

noise and cross-channel correlation have been determined for each contrast channel. We85

also used simulations to investigate whether it is preferable to distribute the same overall86

statistics in more or fewer sampling points, a typical question when the overall acquisition87

time is limited. The cross-channel correlation has also been investigated. This work will help88

determine the acquisition scheme in a multi-point scan that optimises the subsequent phase89

retrieval. In addition, it presents a noise model that can be adapted to different experimental90

techniques based on curve fitting, as well as to different IC shapes.91

Materials and Methods92

Edge illumination93

Edge illumination is a phase gradient method particularly well suited to laboratory applica-94

tions since it is achromatic and does not require a coherent X-ray beam15,21,22. A schematic95

view of an edge illumination system is shown in Fig.1(a). This method is based on the use96

of two absorption gratings, usually referred to as masks. The first (sample) mask is placed97

before the sample, and splits the main X-ray beam into a series of beamlets. The second98

(detector) mask is positioned in front of the detector so as to intercept a portion of each99

beamlet. When an object is inserted into the beam path, refraction causes a shift of the100

beamlets away from or towards the corresponding aperture in the detector mask, leading to a101

change in the recorded intensity. A quantitative relationship exists between the recorded in-102

4



sample
mask

X-ray
source

detector

d
e

te
c
to

r

y

-4 -3 -2 -1 0 1 2 3 4

Normalized mask displacement ti = xi/a3  

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

 data

C
o

u
n

ts

 Gaussian fit

-t2

-t1

t0

t2

t1

( )
(b)

Figure 1: Panel (a) shows a schematic view of a typical edge illumination system. Panel (b)
reports the illumination curve obtained with the specific edge illumination system used and
a fit using a Gaussian model. The investigated arrangement of the sampling points is also
indicated.

tensity change and the refraction angle; this is expressed through the IC, which characterizes103

the phase sensitivity of an edge illumination system. It can be measured experimentally by104

moving the masks relative to each other each other and recording the transmitted intensity;105

usually the sample mask is scanned, while the detector mask is kept still, see Fig.1(a). It106

can be expressed mathematically as:107

IC(x) = (A1 ∗ S ∗ A2)(x) (1)108

where A1 and A2 are the sample and detector mask transmission functions, and S is the109

source shape projected onto the detector plane. The ∗ symbol denotes the convolution110

operator. Since the focal spot is usually Gaussian shaped, the IC is well described by a111

Gaussian function as shown by the fitting of a real dataset in Fig.1(b). The IC is also the112

starting point for a quantitative phase retrieval algorithm since transmission, refraction and113

ultra small-angle scattering have different effects on the curve. Specifically, transmission114

reduces the intensity of each beamlet depending on the imaginary part of the refractive115

index β, and refraction shifts each beamlet according to the first derivative of the phase116

shift with respect to the transverse coordinate x20. In addition, ultra small-angle scattering117

is responsible for a change in the width of the IC23. Combining the effects of these three118

processes on a beamlet, the intensity recorded by each pixel at position x of detector column119

y for a relative mask position t can be expressed as:120

I(x, y, t) = T (x, y)[O(x, y) ∗ IC(x, y, t−∆t)] + d (2)121
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where T (x, y) is the sample transmission function and IC(x, y, t − ∆t) is the illumination122

curve, shifted because of refraction and convolved with the object scattering function O. An123

offset d has been introduced to take into account that usually the IC does not go to zero124

because of residual beam transmission through the masks. The quantities T (x, y) and ∆x are125

quantitatively related to the imaginary and unit decrement of the real part of the refractive126

index (n=1-δ+iβ), respectively. In particular, T (x, y) = e−
∫
µ(x,y,z)dz, where µ = (4π/λ)β127

and λ is the wavelength of the incident radiation and ∆t ∼ zod∇x

∫
δ(x, y, z)dz, where zod128

is the sample to detector distance and ∇x is the gradient in the sample mask plane and129

perpendicular to the direction of the apertures. Assuming a Gaussian approximation for130

both the IC and the scattering function, Eq.2 can be written as:131

I(t) = TAIC e
−(t−∆t)2

(2σ2) + d (3)132

where the x, y dependency has been neglected for simplicity and AIC corresponds to the133

maximum value of the IC without the offset, and the scattering function O(x, y) has been134

described by a Gaussian with unit amplitude and same centre as the IC, and width σO
20,23.135

Therefore, σ =
√
σ2
IC + σ2

O, where σIC is the width parameter of the IC without the object.136

The acquisition of at least three images at different IC positions allows to solve eq.3 for137

each detector pixel and retrieve T (x, y), ∆x and σ (and therefore σO) which are related138

to physical properties of the investigated sample. A straightforward way to proceed is to139

perform pixel-wise Gaussian curve fitting of the form:140

G(t, af,s) = a1 f,se

−(t−a2 f,s)2

(2a2
3 f,s

) + df,s (4)141

where the subscripts f, s refer to the fit parameters obtained without and with the sample,142

respectively. If the offset d exists, it can be assumed a-priori or determined by on an iterative143

basis20. The extracted fit parameters are related to the physical quantities in eq.3 by:144

T = a1 s/a1 f ∆x = a2 s − a2 f σ2
O = a23 s − a23 f (5)145

where all relations apply on a pixel-wise basis. If the offset d is assumed to be the same146

with and without the object, it is sufficient to sample the IC at three positions to fit the147

G(x, af,s) model to the experimental data. If this assumption is violated, as in the case of148

a sample causing non-negligible beam hardening, the offset must be taken into account as a149

parameter in the fit model and at least four sampling point are needed. The Gaussian model150
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of eq.4 is referred to as ”non-normalized”. Similarly, a normalized model can be defined by151

dividing the Gaussian by its area:152

G(t, af,s) =
a1 f,s√
2πa3 f,s

e

−(t−a2 f,s)2

(2a2
3 f,s

) + df,s (6)153

While there is no physical reason to prefer one of these formulations, as we will show in the154

Results section, the normalization factor has an impact in terms of correlation between the155

extracted parameters.156

Noise model157

As indicated by eq.5, the retrieved physical sample parametersare obtained from the pixel-158

wise estimated Gaussian fit parameters. The conventional way to find the optimal set of fit159

parameters is by minimization of the normalized residuals, which means finding the set of160

parameters a0 that solve the system of equations:161

∂R

∂aj
=

∂

∂aj

n∑
i

1

σ2
i

[
yi − f(xi, a

0
j)
]2

= 0 (7)162

where f is the fitted model and j and i run from 1 to the number of model parameters m163

and to the number n of experimental data points yi, respectively. σi is the uncertainty on164

each of the measured yi points.To solve this equation, a set of parameters ak is chosen at165

the beginning as initial guess. In the most used fitting algorithms, assuming the chosen ak166

is reasonably close to a0, the function f can be linearized by Taylor expansion24:167

f(xi, a
0) ∼ f(xi, a

k) +
m∑
j

∂f(xi, aj)

∂aj
(a0j − akj ) = f(xi, a

k) +
m∑
j

Jij∆aj (8)168

where the index k is indicating the iteration number, Jij are the elements of the Jacobian169

matrix J of f , and ∆aj are the distances between the set of parameters at iteration k and170

the target one minimizing the residuals. Substituting the eq.8 into eq.5 and rearranging the171

terms24,25, we obtain the matrix equation:172

(JTWJ)∆a = JTW∆y (9)173

where ∆yi = yi − f(xi, a
k
j ) and W is an n × n matrix with entries 1/σ2

i for each of the n174

experimental points along the diagonal. From eq.9 the distance of the parameters set at175
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iteration k from the target one can be obtained as:176

∆a = (JTWJ)−1JTW∆y = CJTW∆y (10)177

where C is a symmetric m×m matrix defined as C = H−1 = (JTWJ)−1, which is referred178

to as the covariance matrix. It is worth noting that, in the linear least square case, eq.10179

represents the exact solution, while in the non-linear case discussed here it represents the180

distance of the current parameters set from the target one. Therefore, the parameters set can181

now be updated as ak+1 = ak+∆a and the entire process is repeated until some convergence182

criteria are met. Eq.10 provides also the basis to calculate the error on the fitted parameters,183

which is indicated by δaj and can be written as:184

δaj =
n∑
i

∂aj
∂yi

δyi (11)185

The calculation of the derivatives by means of eq.10 leads to the matrix equation:186

δa = CJTWδy (12)187

It is now possible to calculate the variance and the covariance for the variables a as:188

σ2
a = 〈δaδaT 〉 = 〈CJTWδyδyTWJCT 〉 = CJTW〈δyδyT 〉WJCT (13)189

where 〈.〉 denotes the average over the errors on the experimental data points. Since these190

can be assumed to be uncorrelated, the covariance 〈δyiδyj〉 is always zero except when i = j,191

which represents the variance σ2
i . Therefore, W〈δyδyT 〉 is the identity matrix, and eq.13192

becomes:193

σ2
a = C(JTWJ)CT = C (14)194

which shows that the diagonal elements of C represent the variance on the fitted parameters,195

while the off-diagonal terms are their covariances, i.e.:196

σ2
aj

= Cjj σ2
aj−ak = Cjk (15)197

This result shows that, in general, the errors on the coefficients are correlated, which means198

that the off-diagonal terms in the covariance matrix do not vanish. Eq.15 is the starting point199

for the noise analysis performed in this work. Following the definition of C, the elements of200

the covariance matrix can be obtained from the inversion of H, whose elements are of the201

form:202

hjk =
n∑
i=1

1

σ2
i

∂f(xi, a)

∂aj

∂f(xi, a)

∂ak
(16)203
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Three-point retrieval204

In order to proceed further, we assume that f is well represented by a Gaussian model,205

which justifies the use of eq.5 to fit the experimental intensity distribution described by206

eq.3. The offset is assumed not to vary following the introduction of the sample, so that207

only three IC sampling points are needed. We also assume that the uncertainty σi on the208

measured value yi is a function of the value of the point itself and of the set of parameters a,209

i.e. σi = σ(xi, a), that from an experimental point of view corresponds to use the standard210

deviation of a series of measurements obtained from a Poissonian distribution as a noisy211

estimate of the true noise value. Under these assumptions H becomes a 3 × 3 matrix the212

independent elements of which are:213

h11 =
n∑
i=1

e−t
2
i

σ(xi, a)
h12 =

a1
a3

n∑
i=1

ti
e−t

2
i

σ(xi, a)
h13 =

a1
a3

n∑
i=1

t2i
e−t

2
i

σ(xi, a)

h22 =
n∑
i=1

t2i
e−t

2
i

σ(xi, a)
h23 =

a21
a23

n∑
i=1

t3i
e−t

2
i

σ(xi, a)
h33 =

a21
a23

n∑
i=1

t4i
e−t

2
i

σ(xi, a)

(17)214

215

where ti = (xi − a2)/a3. In general, all the hij elements are different from zero. However,216

without loss of generality, the origin of the x-axis can be set in a2 (i.e. a2 = 0), and the n217

data points can be assumed to be symmetrically arranged on either side of the IC peak (see218

plot in Fig.1(b)) which represents the most typical acquisition scheme for edge illumination.219

With this choice, all the elements with an odd power of t vanish, namely h12 = h23 = 0.220

Moreover, H is a symmetric-defined matrix, therefore:221

H =

h11 0 h13
0 h22 0
h13 0 h33

 (18)222

223

which can be analytically inverted, leading to the following expressions for the variances of224

the fitted Gaussian amplitude, centre and width:225

σ2
a1

= C11 =
h33

h11h33 − h213
σ2
a2

= C22 =
1

h22
σ2
a3

= C33 =
h11

h11h33 − h213
(19)226

while only the off-diagonal element C13 = C31 are different from zero and equal to:227

σ2
a1−a3

= C13 = − h13
h11h33 − h213

(20)228

indicating that a degree of correlation exists between the fitted amplitude and width. In229

order to obtain a theoretical model which can be directly compared to the experimental230
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data regardless of the sample, we further restrict the analysis to noise in the background,231

the reduction of which will boost the SNR of the image5. This allows to assume the same232

expected value for the fitted parameters with and without the sample and constant offset.233

Therefore, the error on the transmission, refraction and dark-field contrast channels can be234

obtained from the variance on fitted parameters simply by applying error propagation to235

eq.5:236

σ2
Transmission = 2

σ2
a1

a21
σ2
Refraction = 2 σ2

a2
σ2
Dark−field = 2 σ2

a3
(21)237

Assuming that the three data points are of the form (−x1, 0, x1) where as said 0 corresponds238

to the peak of the IC, and a Poisson-like noise of the form σ(xi, a) =
√
AG(xi, a) +B, which239

agrees with the behaviour of the normalized data in use (see supplementary materials), the240

hij elements in eq.17 can be calculated analytically leading to the following expressions for241

the noise in the background of each contrast channel:242

σ2
Transmission =

2

a21
[A(a1 + d) +B] σ2

Refraction =
a43
x21a

2
1

et
2
i

(
Aa1e

−t2i /2 + Ad+B
)

σ2
Darkfield =

a63
x41a

2
1

[(
2 + et

2
i

)
(B + 2dA) + Aa1

(
2 + et

2
i /2
)]

(22)243

As well as on the system parameters (through the shape of the IC, which is a function of the244

source and mask parameters), the noise in the refraction and dark-field channels depends on245

the sampling points, suggesting that the noise in the retrieved images can be optimized by a246

careful choice of their position. Remarkably, the noise in the transmission channel is found247

not to depend on the IC width nor to the sampling points position. It mainly depends on the248

term a1 + d which represents the top value of IC, confirming the empirical observation that249

the only way to improve the conventional transmission contrast is to increase the photon250

statistic16 It is worth noting that the noise variances can be obtained in the case of a perfect251

Poissonian response setting A = 1 and B = 0. On the other hands, if the noise of the system252

is characterized by a Gaussian distributed noise which is independent from the position of the253

sampling points, which can be the case of the dark current for an integrating detector, the254

same analysis can be repeated simply this new component to the definition of σ, obtaining255

new equations for the noise in each channel.256
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Five-point retrievals257

In the previous section, restricting the analysis to the background noise allowed to assume258

that the offset in the fitting model did not vary with the introduction of the sample, and259

therefore that only three sampling points were required for the retrieval. However, four or260

more sampling points are needed when imaging specimens for which the offset cannot be261

assumed constant, such as those causing a significant degree of beam hardening. In this case,262

we will use five sampling points, which is compatible with our approach where a point on the263

top of the IC is accompanied by an equal number of additional points placed symmetrically264

on each side, and leads to a more robust retrieval of the four sample parameters. Assuming265

again sampling points symmetric with respect to the IC top, i.e. (−x2,−x1, 0, x1, x2) and266

a2 = 0, the matrix H becomes a 4× 4 matrix of the form:267

H =


h11 0 h13 h14
0 h22 0 0
h13 0 h33 h34
h14 0 h34 h44

 (23)268

269

which can be inverted to obtain C. From C the same considerations leading to eq.22 can be270

followed to obtain explicit expressions for the background noise of the three contrast channels271

and their correlations, which are again a function of the fitted IC parameters a and of the272

positions of the sampling points. Explicit expressions are reported in the supplementary273

materials due to their increased length and complexity.274

Data acquisition275

The imaging system uses a tungsten anode COMET MXR-160HP/11 x-ray source (Comet,276

Wünnewil-Flamatt, Switzerland), which, for collecting these data, was operated at 90 kVp277

and 7.7 mA with a nominal focal spot of 0.4 mm. To increase the intensity of the phase signal,278

this was reduced to 70 µm along the x direction with a Huber slit (Huber Diffraktionstechnik279

GmbH & Co. KG, Rimsting, Germany) placed against the output window. The detector280

is a single photon counting Cd-Te CMOS (XCounter XC-FLITE FX2, Direct Conversion,281

Danderyd, Sweden) with 2048× 128 square pixels 100 µm in side, placed at approximately282

2.1 m from the x-ray source. Pre-sample and detector masks were placed at 1.60 m and283

2.06 m from the source, respectively. The detector mask was 20 cm tall and featured 28 µm284
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wide apertures (one per detector pixel), with a regular period of 98 µm. The pre-sample285

mask was 15 cm tall and featured 21 µm wide apertures, with a regular 75 µm period, offset286

along the z-axis, by -22 mm to create a Moire fringe pattern at the detector. The masks287

were fabricated by electroplating approximately 300 µm of gold on a 1 mm thick graphite288

substrate by Microworks GmbH (Karlsruhe, Germany). They were mounted on pairs of289

linear translators for movement along and across the optical axis (Newport, Irvine, CA),290

and on a cradle for rotation around the optical axis (Kohzu, Kawasaki, Japan). This system291

allows producing an IC spanning over many pixels, and tuning the number of sampling points292

by changing the pre-sample mask offset along the z-axis, and therefore the size of the Moire293

fringe. Since the noise analysis was restricted to the background, 50 flat-field images of 1294

second exposure each have been used for the data analysis. The image size was 712 × 78295

pixels, where the number of rows and columns correspond to independent IC profiles and296

to the number of IC sampling points, respectively. In this case, the latter is high enough to297

allow for an efficient sub-sampling (see supplementary materials).298

Data analysis299

As a preliminary step, all the 712 × 50 IC profiles were fitted with the Gaussian model300

reported in eq.5 to obtain the average amplitude, centre and offset required for theoretical301

model. The results are reported in table 1 in terms of mean value and standard deviation,302

where a1,2,3,4 are the IC’s amplitude, centre, width and offset, respectively. The x-axis for

Parameter units mean value standard deviation
a1 number of photons 1700 19
a2 mm 6 · 10−5 1 · 10−3

a3 mm 0.1 1 · 10−3

a4 number of photons 300 6

Table 1: Average values of the experimental Gaussian profiles

303

the fit has been chosen symmetrically with respect to the top of the IC, in accordance to304

the a2 = 0 assumption used to develop the theoretical model. To eliminate the effects of305

masks and beam inhomogeneities, the average of 35 images has been used as a flat-field306

to normalize the remaining 15 images, which have been used for the actual data analysis.307
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The noise of the so obtained data are described by a Poisson-like distribution of the form308

√
AN +B, where N is the number of photons and A = 1.15, B = 20 (see supplementary309

materials). In order to preserve the average value of each column after normalization, these310

have been multiplied by the average counts of the corresponding columns in the flat-field;311

as a reminder, because of the moiré-style acquisition, columns correspond to different points312

on the IC (see above). For this reason, images have been rearranged in a set where the313

n-th image corresponds to the n-th column of all the 15 original images (see supplementary314

material for details). Therefore, the new dataset consists of a number of images equal to315

the number of columns in the original images, each corresponding to a subsequent point316

on the IC as would be acquired in a standard multi-point EI acquisition. This rich dataset317

with many available IC points allowed selecting multiple combinations corresponding to both318

three and five sampling point acquisitions. In the first case they are of the form (−x1, 0,319

x1) where x1 is the distance from the sampling point located at 0 (the top of the IC). In320

the latter, they are of the form (−x2,−x1, 0, x1, x2), where both x1 and x2 are varied (with321

x2 ≥ x1). According to the number and arrangement of the investigated sampling points,322

the corresponding “re-arranged” images are selected, and a pixel-wise weighted non-linear323

least square fit applied, with weights equal to the inverse of the value of the fitting function324

in agreement to eq.7. The fit was performed by means of Matlab® lsqcurvefit using default325

parameters. The result is a series of about 712× 15 values for amplitude, centre and width.326

Two subsets of size 50 × 50 have been extracted at random for each parameter, and the327

corresponding transmission, refraction and dark-field signals have been calculated according328

to eq.5. This random extraction of 50 × 50 subsets for each parameter was repeated 100329

times, and the standard deviation for the three contrast channels recorded each time. The330

final noise value was obtained as the average of all these standard deviation values, and331

its uncertainty as their standard deviation. A similar approach is used to calculate the332

covariance according to its definition:333

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (24)334

where E denotes the expected value, and X and Y are two random distributed variables.335

By definition the covariance is not bounded and its units change according to the meaning336

of X and Y . Therefore, to enable comparing different contrast channels, the correlation has337
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been used instead, which is defined as:338

corr(X, Y ) =
cov(X, Y )√
var(X)var(Y )

(25)339

where var indicates the variance. Unlike the covariance, the correlation has no dimension340

and is limited to the interval [−1, 1] where 1 and -1 indicate total positive or negative341

correlations.342

Finally, to investigate also the relationship between background noise and exposure time343

per point, Monte Carlo simulations have been used. In order to reduce complexity when344

increasing the number of points they have been evenly distributed in the ±3a3 range. For345

each investigated number of points X = (x1...xn) with n = (3, 5, 7, 9, 11), the intensity values346

G(X, a) were extracted, where a is the set of parameters reported in table 1 describing the347

experimental IC parameters. A Poisson-like noise like the one observed in the normalized348

data (see supplementary materials) was added. The set of intensity values obtained in this349

way was fitted as previously described, considering a constant offset. This procedure has350

been repeated 106 times, resulting in a large set of values for Gaussian amplitude, centre and351

width. In order to simulate the retrieval of the individual contrast channels, a subset of 800352

values was randomly chosen. Half of the values were used as a sample images and half as353

flat-field images, and the different contrast channels calculated by pixel-wise application of354

eq.5, assuming the standard deviation over the 400 values as the noise. Finally, the average355

value of the standard deviation over 103 repetitions was considered as the final noise value.356

Results357

In Fig.2 the noise values expected for the three retrieved contrast channels are compared358

to the corresponding experimental values for the three points retrieval case. The sampling359

points are of the form t0 = 0 and t1 = ±x1/a3, so that the entire triplet is determined by360

varying a single parameter. Examples of the experimental retrieved images are also shown,361

with the choice of the three sampling points shown as red dots in the inset. A very good362

agreement between predicted and experimental values is observed for all three channels. In363

particular, the error on the retrieved transmission, see Fig.2(a) and(d), is confirmed to be364

independent from the choice of the sampling points, in agreement with eq.22 which shows365

that it depends only on the top value of the IC. Therefore, the SNR in the transmission366
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Figure 2: Panel (a) to (c) show the comparison between the experimental values for the
standard deviation in the background (black dots) and the values predicted by the model
(red lines) for the transmission, refraction and dark-field contrast channels, respectively.
Panels (d) to (f) show example images corresponding to the retrieved contrast channels at
different positions of the sampling points. Images are shown on the same gray level scale for
each contrast channels. Arrows in panels (b) and (c) point at the minimum of the curve for
the refraction and dark-field channels.

contrast can be improved only by increasing the X-ray flux. On the other hand, noise367

in the refraction and dark-field channels has a more complex behaviour. In both cases368

a minimum can be found, located at t = 1.25 and t = 1.8 for refraction and dark-field,369

respectively, as shown in Fig.2(b) and (c). In refraction, noise is minimised by choosing370

the off-centre frames further away from the IC’s maximum slope position (t = 1), for which371

phase sensitivity is highest when acquiring two points only (see Fig.2(e))26. Moving down372

the IC beyond the t = 1.25 point, noise starts to rise fast due to the increased uncertainty373

on the IC centre estimation. This can be explained by an overall reduced phase sensitivity,374

since only sampling points for which the IC derivative is approaching zero (top and tails)375

are now being considered27. For the same reason, an increase in the noise is found when the376

two additional sampling points approach the top of the IC. In the dark-field channel, the377

minimum is located further away from the IC’s maximum slope position, at approximately378

twice the standard deviation, approaching the tails of the curve as show in Fig.2(c) and (f).379

In this case the noise rises rapidly when the sampling points approach the top, since the fit380

becomes less sensitive to changes in width. Finally, a deviation from the model starts to be381

visible when ti approaches the tails of the curve, which can be explained by a non perfect382
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Figure 3: Panels (a), (e) and (i) show the experimental standard deviation values for trans-
mission, refraction and dark-field, respectively, as a function of the IC sampling points t1
and t2. For each contrast channel, line profiles along the dotted lines shown in the 2D plots
are extracted and compared to the model predictions, as shown in the panels to the right
of each 2D plot. Coloured arrows and the ICs in the insets indicate the combination of
sampling points leading to the minimum standard deviation.

convergence of the fitting algorithm since all the points in the fitting model have now a null383

derivative.384

A similar analysis is shown in Fig.3 for the five-point retrieval case. In this case, a 2D385

plot is needed to show the noise as a function of both sampling point pairs ±t1 and ±t2,386

while t0 is again kept constant at the top of the IC. Results for transmission, refraction387

and dark-field are shown in Fig.3(a),(e) and (i), respectively. While the acquisition of at388

least four sampling points is necessary to fit also the offset, the fact that we are restricting389

our analysis to the background justifies the assumption of constant offset, since no beam390

hardening is expected. When comparing the results for the three contrast channels, some391

differences can be observed. For transmission, the arrangement leading to minimum noise is392
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obtained for t1 = 0.6, t2 = 1, 3, as shown in Fig.3(a). This corresponds to placing two points393

very close to the top of the IC, and the other two close to the maximum slope position. For394

refraction, the minimum noise arrangement is obtained two points at the maximum slope395

and the other two close to the tails, namely for t1 = 1 and t2 = 2.5, as shown in Fig.3(e).396

For dark-field, also the first two points are shifted towards the tails, with minimum noise397

achieved for t1 = 1.8 and t2 = 2.5, as shown in Fig.3(i). For all contrast channels, line398

profiles extracted from the 2D plots along three different directions are compared to the399

model’s predictions, revealing a very good match, as shown in Fig.3(b) to (d), Fig.3(f) to400

(h) and Fig.3(j) to (l) for transmission, refraction and dark-field, respectively.401

Another interesting aspect to be analysed is the correlation between the noise of the402

fitted parameters which may translate into a correlation between the contrast channels.403

According to eq.15 this can be addressed by analysing the off-diagonal elements of the404

covariance matrix or, equivalently, the correlation coefficient described in eq.25. The results405

are shown in Fig.4 for both three and five sampling points. Panels (a) to (c) show the406

correlation between fitted parameters when three sampling points are acquired (and therefore407

a constant offset assumed). A negative correlation between amplitude and width is observed408

when a non-normalized Gaussian function is used for fitting (see eq.4). As the distance t1409

of the sampling points from the top increases, the correlation decreases, approaching 0.2410

when the extreme position t = 2.4 is considered. While this position leads to the lowest411

correlation, it is not convenient in terms of noise for both the refraction and dark-field412

channels, as shown in Fig.3. However, when a normalized Gaussian profile is used for the413

fitting (see eq.6), a positive correlation is found (blue line in Fig.4(a)), which reaches a414

minimum correlation value of 0.2 at a more convenient location, t = 1.6. In both cases,415

the match between model predictions and experimental data is very good. Conversely,416

no correlation is expected between amplitude and centre and centre and width, as shown417

in Fig.4(b) and (c), respectively. The expected zero correlation is also confirmed by the418

experimental data, which fluctuate around zero with a slight increase for the a1-a2 correlation419

at high t values. A similar analysis was performed using five sampling points. The correlation420

is investigated as a function of the position of both pairs of sampling points ±t1 and ±t2,421

while t0 = 0 is kept constant. A normalized Gaussian model was used which the analysis of422

the three-point case revealed to be preferable. Offset is included in the fitting parameters,423

since qualitative experimental observations indicated it introduces a non-negligible degree424
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Figure 4: Panels (a) to (c) show the comparison between expected and experimentally
measured correlation between the fitting parameters when three sampling points are used.
For the correlation between amplitude and width (panel (a)), the different results obtained
by using normalized (blue line) and non-normalized (red line) Gaussians are shown. Panels
(d) to (f) show the same comparison between theoretical 2D plots obtained when using 5
sampling points, with the corresponding experimental plots shown in the insets. In this case,
the offset has been considered as a free parameter, and the correlations between transmission,
dark field and offset (taken in pairs) are reported. Panels (g) to (i) show line profile extracted
from the 2D plots across the dashed lines indicated. In all panels (d) to (f), the position
leading to minimum correlation is indicated by red arrows, and the corresponding positions
of the sampling points is shown as red dots in the ICs in the insets of panels (g) to (i).

of correlation. The model predictions are presented as a three 2D plot in Fig.4(d) to (f),425

with the corresponding experimental plots shown as insets. Line profiles extracted along426

the indicated dashed lines for both model and experiment are reported in panels (g) to (i),427

showing a good match in all cases. A minimum can be found in all three cases. This is428
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located at t1 = 1.5 and t2 = 1.9 for amplitude-width and amplitude-offset correlations, and429

at slightly higher IC positions t1 = 1.3 and t2 = 1.8 for the width-offset correlation. The430

use of a normalized amplitude coefficient (see eq.6) leads to a positive correlation between431

amplitude and width, which can be expected since an increase in amplitude is compensated432

for by an increase in width to keep their ratio constant. Conversely, amplitude-offset and433

width-offset exhibit an anti-correlated behaviour. This can be explained by considering that434

an increase in the offset ’cuts out’ the bottom part of the IC, leading to a decrease in its435

width as well as in its amplitude. The introduction of the offset leads, in general, to a higher436

degree of correlation between parameters, which is in the |0.75| to |0.9| range for all the three437

contrast channels.438

To understand the impact of increasing the sampling points above five as well as of439

the reduction in the exposure time per point, a Monte Carlo simulation has been performed440

with three to eleven sampling points and a fixed imaging time, ranging from 1 to 20 seconds.441

To keep the overall imaging time constant, the exposure time per point was adjusted as a442

function of the number of sampling points, which corresponds to the common experimental443

situation when a constraint exists on scanning time. As the number of points increase, the444

equations are still valid, however, the level of complexity makes unfeasible to explore the445

entire parameter space. Therefore, the points have been chosen to be evenly spaced in the446

±3a3 range, even though such configuration may not be the one resulting in minimum noise.447

The results are shown in Fig.5(a) to (c), with the arrangement of the corresponding sampling448

points schematised in Fig.5(d). For a given overall scanning duration, noise increases with449

the number of points for both transmission and dark-field as the time per point decreases.450

In particular, a sudden increase in the noise is found when going from three to five points,451

while for higher numbers of points the rate at which noise increases slows down. Conversely,452

refraction seems to be less affected, with noise exhibiting a slight increase with the number453

of points only when the total scanning time is low (1-2 s), and a flat behaviour at higher454

scanning times. This is due to the higher stability of the fit in determining the curve’s centre,455

which can be reliably estimated even if the points are significantly affected by noise.456
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Figure 5: Panels (a) to (c) show the results of Monte Carlo simulations of the noise in
retrieved transmission, refraction and dark-field images for a varying number of sampling
points equally distributed within a pre-determined total scanning time. The points have
been chosen to be evenly spaced in the ±3a3 range, as per the schematic in panel (d).

Discussion457

Phase sensitivity in edge illumination is expressed by the IC, which is well described by458

a Gaussian function when using laboratory sources28. The IC is also the basis of phase459

retrieval, which is performed by means of pixel-wise fitting of images captured at different460

illumination levels20. Therefore, the noise in the retrieved contrast channels depends on461

the error on the fit, which can be calculated by means of the covariance matrix. Good462

agreement between the noise calculated according to this model and directly extracted from463

experimental data was found, which allowed to select optimal IC positions when acquiring464

data for multi-point phase retrieval (see supplementary materials for an analysis of the465

validity limits of the presented model).466

In common experimental conditions, the total scanning time is usually fixed. Therefore,467

the exposure time per point must be adjusted according to the acquired number of points.468

The best performance in terms of noise is achieved by using the lowest number of points469

needed to fit the IC, namely three points if the offset can be considered constant, and four470

otherwise even if we investigated the five-point case which is suitable for the developed model471
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requiring an odd number of points. This is due to the increased relative error on each single472

measurements, which increases when the scanning time per point is decreased to keep the473

overall scanning time constant.474

It was also found that, both when using three and five sampling points, a configura-475

tion leading to minimum noise exists, which is a function of the parameters of the edge476

illumination setup in use.477

The analysis of the correlation between channels showed that, when using three sampling478

points and a constant offset, the correlation between amplitude and width can be minimised479

but not eliminated, suggesting that a certain degree of correlation between transmission and480

dark-field can not be avoided when using curve fitting. Interestingly, a different behaviour481

is observed when using non-normalized vs normalized Gaussian profiles. In both cases, the482

same minimum correlation value can be achieved, but in very different ways. In the non-483

normalized case, the minimum is obtained with a set of sampling points far from the ideal484

(i.e. noise-minimising) positions for both refraction and dark-field . Conversely, when a485

normalized Gaussian profile is used, the position of minimum correlation in found at a more486

convenient location, close to minimum noise configuration for both refraction and dark field.487

We also investigated the role of the offset in terms of its correlation with other channels when488

five sampling points are acquired, and indeed observed a very high correlation of the offset489

with both transmission and dark-field. While this correlation may not be a concern when490

low absorbing or highly scattering samples are imaged, it can become a problem when using491

high energy X-rays for which both signals are reduced. Therefore, the use of normalized492

Gaussian is always recommended when performing quantitative analysis.493

It is worth noting that this analysis is limited to the background noise, since samples494

introduce a level of complexity which is difficult to model. The error propagation equations495

(see eq.21) which relate the variance of the contrast channels to the one of the fitted Gaussian496

parameters, do not hold anymore within the sample; moreover, offset cannot usually be497

assumed to be constant. The change in offset is strictly dependent on the specific sample,498

and can vary on a pixel-by-pixel basis, which makes it extremely difficult to predict. In499

addition, the use of the covariance to estimate errors requires knowledge of the noise on500

the experimentally measured intensity. If a photon counter detector is used, a Poisson501

noise behaviour can be assumed a priori ; however, if this is not the case, an experimental502
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measurement of the intensity variance at each sampling point is required. Finally, the noise503

analysis reported here has been performed on normalized images. Therefore, this noise values504

must be considered as a lower limit, since mask inhomogeneities may introduce an additional505

random noise component which is not accounted for in our analytical model. However, the506

good agreement with experimental data obtained with real, imperfect masks would suggest507

this is a lesser concern, well addressed by the flat field correction procedure. Finally, it is508

worth noting that changes in the illumination curve position across the field of view due509

to misalignment of the system and mask unevenness, have a reduced impact on the noise510

optimization since these are in the range of a few microns even for large masks while the511

mask period is usual dozens of microns (see supplemental material).512

Conclusions513

In this work, an analytical model describing the noise background in retrieved multimodal514

edge illumination images has been developed and compared to experimental data. Since515

phase retrieval in edge illumination is related to curve fitting, the model was based on516

the analysis of the standard error on fitted parameters. The good match observed with517

experimental data demonstrates the validity of the proposed model, which was then used518

to tackle some common questions occurring when acquiring multi-points edge illumination519

images. In particular, the arrangement of IC points leading to the best noise performance for520

each contrast channel, and to the minimum correlation between parameters, was determined.521

Finally, it was found that, given a fixed overall scanning time, its distribution into a smaller522

number of sampling points with higher statistics leads to minimum noise, suggesting the523

use of the smallest possible number of sampling points for phase retrieval. Overall, these524

results indicate a series of optimised procedures which should be followed in order to optimize525

experimental acquisitions in edge illumination.526
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