26 research outputs found

    On the characterization of GJ 504: a magnetically active planet-host star observed by the Transiting Exoplanet Survey Satellite (TESS)

    Full text link
    We present the results of the analysis of the photometric data collected in long and short-cadence mode by the Transiting Exoplanet Survey Satellite (TESS) for GJ 504, a well studied planet-hosting solar-like star, whose fundamental parameters have been largely debated during the last decade. Several attempts have been made by the present authors to isolate the oscillatory properties expected on this main-sequence star, but we did not find any presence of solar-like pulsations. The suppression of the amplitude of the acoustic modes can be explained by the high level of magnetic activity revealed for this target, not only by the study of the photometric light-curve, but also by the analysis of three decades available of Mount Wilson spectroscopic data. In particular, our measurements of the stellar rotational period Prot=3.4 d and of the main principal magnetic cycle of 12 a confirm previous findings and allow us to locate this star in the early main sequence phase of its evolution during which the chromospheric activity is dominated by the superposition of several cycles before the transition to the phase of the magnetic-braking shutdown with the subsequent decrease of the magnetic activity

    Holistic spectroscopy: complete reconstruction of a wide-field, multiobject spectroscopic image using a photonic comb

    Get PDF
    The primary goal of Galactic archaeology is to learn about the origin of the Milky Way from the detailed chemistry and kinematics of millions of stars. Wide-field multifibre spectrographs are increasingly used to obtain spectral information for huge samples of stars. Some surveys (e.g. GALAH) are attempting to measure up to 30 separate elements per star. Stellar abundance spectroscopy is a subtle art that requires a very high degree of spectral uniformity across each of the fibres. However, wide-field spectrographs are notoriously non-uniform due to the fast output optics necessary to image many fibre outputs on to the detector. We show that precise spectroscopy is possible with such instruments across all fibres by employing a photonic comb – a device that produces uniformly spaced spots of light on the CCD to precisely map complex aberrations. Aberrations are parametrized by a set of orthogonal moments with ∼100 independent parameters. We then reproduce the observed image by convolving high-resolution spectral templates with measured aberrations as opposed to extracting the spectra from the observed image. Such a forward modelling approach also trivializes some spectroscopic reduction problems like fibre cross-talk, and reliably extracts spectra with a resolution ∼2.3 times above the nominal resolution of the instrument. Our rigorous treatment of optical aberrations also encourages a less conservative spectrograph design in the future

    The GALAH survey and Gaia DR2: (non-)existence of five sparse high-latitude open clusters

    Get PDF
    Sparse open clusters can be found at high galactic latitudes where loosely populated clusters are more easily detected against the lower stellar background. Because most star formation takes place in the thin disc, the observed population of clusters far from the Galactic plane is hard to explain. We combined spectral parameters from the GALAH survey with the Gaia DR2 catalogue to study the dynamics and chemistry of five old sparse high-latitude clusters in more detail. We find that four of them (NGC 1252, NGC 6994, NGC 7772, NGC 7826) – originally classified in 1888 – are not clusters but are instead chance projections on the sky. Member stars quoted in the literature for these four clusters are unrelated in our multidimensional physical parameter space; the quoted cluster properties in the literature are therefore meaningless. We confirm the existence of visually similar NGC 1901 for which we provide a probabilistic membership analysis. An overdensity in three spatial dimensions proves to be enough to reliably detect sparse clusters, but the whole six-dimensional space must be used to identify members with high confidence, as demonstrated in the case of NGC 1901

    The GALAH survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity

    Get PDF
    Using GALAH (GALactic Archaeology with HERMES) survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d≲1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s−1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos(HIgh Precision Parallax COllecting Satellite) observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.Parts of this research were conducted by the Australian Research Council (ARC) Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), through project number CE170100013. JB-H acknowledges a Miller Professorship from the Miller Institute, UC Berkeley, and an ARC Laureate Fellowship which also supports GDS and SS. SM acknowledges support from the ARC through DECRA Fellowship DE140100598. JK is supported by an ARC DP grant awarded to JB-H and TB. MH is supported by ASTRO 3D Centre of Excellence funding to the University of Sydney and an ARC DP grant awarded to KF. LD gratefully acknowledges a scholarship from Zonta International District 24. LD and KF acknowledge support from ARC grant DP160103747. LC is the recipient of an ARC Future Fellowship (project number FT160100402)

    The Complex Behaviour of s-Process Element Abundances at Young Ages

    No full text
    Open clusters appear as simple objects in many respects, with a high degree of homogeneity in their (initial) chemical composition, and the typical solar-scaled abundance pattern that they exhibit for the majority of the chemical species. The striking singularity is represented by heavy elements produced from the slow process of the neutron-capture reactions. In particular, young open clusters (ages less than a few hundred Myr) give rise to the so-called barium puzzle: that is an extreme enhancement in their [Be/Fe] ratios, up to a factor of four of the solar value, which is not followed by other nearby s-process elements (e.g., lanthanum and cerium). The definite explanation for such a peculiar trend is still wanting, as many different solutions have been envisaged. We review the status of this field and present our new results on young open clusters and the pre-main sequence star RZ Piscium

    The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations

    No full text
    Spectroscopic observations of stars belonging to open clusters, with well-determined ages and distances, are a unique tool for constraining stellar evolution, nucleosynthesis, mixing processes, and, ultimately, Galactic chemical evolution. Abundances of slow (s) process neutron capture elements in stars that retain their initial surface composition open a window into the processes that generated them. In particular, they give us information on their main site of production, i.e., the low- and intermediate-mass Asymptotic Giant Branch (AGB) stars. In the present work, we review some observational results obtained during the last decade that contributed to a better understanding of the AGB phase: the growth of s-process abundances at recent epochs, i.e., in the youngest stellar populations; the different relations between age and [s/Fe] in distinct regions of the disc; and finally the use of s-process abundances combined with those of α elements, [s/α], to estimate stellar ages. We revise some implications that these observations had both on stellar and Galactic evolution, and on our ability to infer stellar ages
    corecore