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Abstract: Spectroscopic observations of stars belonging to open clusters, with well-determined
ages and distances, are a unique tool for constraining stellar evolution, nucleosynthesis, mixing
processes, and, ultimately, Galactic chemical evolution. Abundances of slow (s) process neutron
capture elements in stars that retain their initial surface composition open a window into the processes
that generated them. In particular, they give us information on their main site of production, i.e., the
low- and intermediate-mass Asymptotic Giant Branch (AGB) stars. In the present work, we review
some observational results obtained during the last decade that contributed to a better understanding
of the AGB phase: the growth of s-process abundances at recent epochs, i.e., in the youngest stellar
populations; the different relations between age and [s/Fe] in distinct regions of the disc; and finally
the use of s-process abundances combined with those of α elements, [s/α], to estimate stellar ages.
We revise some implications that these observations had both on stellar and Galactic evolution, and
on our ability to infer stellar ages.

Keywords: galaxy: abundances; open clusters and associations: general; disk nucleosynthesis

1. Introduction

The production of elements heavier than iron follows a different path from the lighter
ones, as they cannot be synthesised through thermonuclear fusion reactions. They are
formed by addition of neutrons in various astrophysical contexts, either by rapid (r) or slow
(s) processes, depending on whether the neutron-capture is slow or rapid compared to the
timescale of the β-decay [1]. The production of s-process elements can occur both in massive
stars (the so-called weak process; see, e.g., Heil et al. [2], Pignatari et al. [3,4]) and during the
asymptotic giant branch (AGB) phase of low- and intermediate-mass stars (the main process;
see, e.g., Busso and Gallino [5], Busso et al. [6], Karakas and Lugaro [7], Cristallo et al. [8],
Busso et al. [9]). Here, we focus on the s-process elements produced by the main process. In
this contribution, we review the steps done in the last decade to understand the origin and
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evolution of the s-process elements, and the great contribution given by high-resolution
spectroscopic observations of open star clusters.

2. The Open Cluster Samples and the Contribution of the Gaia-ESO Survey

Open star clusters are coeval groups of stars, sharing the same chemical composition,
and belonging to the Galactic disc. Thanks to photometric observations of several members
along the evolutionary sequence of star clusters, it is possible to determine precisely their
age and distance. The reached precision is much higher than that achieved when measuring
the ages of field stars. In addition, the population of open clusters covers a wide range of
ages (from a few Myr to about 7–8 Gyr), and Galactocentric distances (5–20 kpc), thus rep-
resenting among the best tracers of the kinematics and of the chemistry (including its time
evolution) of the Galactic thin disc (see Dias et al. [10], Kharchenko et al. [11] for the two
most widely used catalogues before Gaia). The Gaia mission has given an incredible boost
leading to the discovery, confirmation and determination of the properties of thousands
of clusters [12–16]. Gaia results were amplified by combining them with ground-based
large spectroscopic surveys, e.g., APOGEE [17], GALAH [18] and Gaia-ESO [19,20]. Among
them, the Gaia-ESO survey, a large public spectroscopic survey carried on with the spectro-
graph FLAMES [21] at ESO/VLT [19,20] from the end of 2011 to 2018, devoted about 36%
of the 340 allocated observing nights to open clusters. Its cluster sample was designed to
cover the whole age-distance-metallicity parameter space, observing in each cluster large
and unbiased samples of stars. The Gaia-ESO sample thus represents a unique tool for
investigating variations in the spatial and temporal properties of s-process abundances
in the disc. A description of the survey and of the open cluster sample can be found in
Randich et al. (submitted).

3. Age Effects in the Abundances of the S-Process Elements

From an observational point of view, the study of the chemical composition of
stellar populations with well-measured ages, i.e., star clusters, has revealed an inter-
esting property of s-process elements related to their main site of production. The pi-
oneering work of D’Orazi et al. [22] indeed noticed a net increase in the abundance
of the s-process abundances in the youngest stellar populations of their sample, with
Ba abundance noticeably higher in the younger clusters than in the older ones. Sub-
sequent works [23,24] added several other elements with important s-process contribu-
tions (yttrium, zirconium, lanthanum, and cerium), confirming the increasing trend of
their abundances towards younger ages. Several further works have contributed to the
understanding of the origin of this growth, without yet reaching a general consensus,
arguing whether the enrichment is due to mixing effects that produce a larger source
of neutrons, and hence s-elements, in low-mass stars, or whether it is due to observa-
tional effects or related to stellar characteristics, such as chromospheric or magnetic activ-
ity (see, e.g., Busso et al. [9], Bisterzo et al. [25], Mishenina et al. [26], Trippella et al. [27],
Reddy and Lambert [28], Magrini et al. [29], Spina et al. [30,31], Baratella et al. [32]). Other
works used the properties of those abundance ratios as a valuable tool to estimate the ages
of stars (see, e.g., Spina et al. [30], Nissen [33], Delgado Mena et al. [34], Casali et al. [35],
Horta et al. [36]).

One of the most interesting open topics in chemical evolution is, indeed, to understand
the origin of the time-evolution of the s-process abundances, both for its importance in our
comprehension of the evolution and nucleosynthesis of the most numerous population,
i.e., low- and intermediate-mass stars, and for its application as a tracer of stellar age.
Chemical evolution models assuming a decreasing efficiency in the production of s-process
elements in low-mass stars (see, e.g., Pagel and Tautvaisiene [37], Travaglio et al. [38]) pre-
dict a plateau or even a decrease in the abundances [El/Fe] versus age in the last 4–5 Gyr.
In such models, an increase at later times was not expected. However, from an obser-
vational point of view, a general consensus of an increasing, though weak, trend in the
s-process elements production exists, both from cluster samples (e.g., Maiorca et al. [23,24],
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Mishenina et al. [26], Yong et al. [39], Jacobson and Friel [40], Mishenina et al. [41], Sales-
Silva et al. [42]) and from field stars (e.g., Reddy and Lambert [28], Spina et al. [30],
Nissen et al. [43]). The observations of Gaia-ESO [29] confirmed with a large statistical
sample of open clusters and field stars, homogeneously analysed, the increasing trend
of s-process abundance ratios (Y, Zr, Ba, La, Ce) with age, in the solar neighbourhood
(see Figure 1). The weighted linear fits shown in Figure 1, computed for stellar ages
<8 Gyr, and considering both the open cluster and field star populations, highlight the
increase of [El/Fe] at recent epochs. Details and coefficients of the fits can be found in
Magrini et al. [29]. In Figure 1, we can notice the so-called barium puzzle, i.e., the over-
abundance of Ba with respect to the other elements of the second peak in younger stellar
populations, which is probably linked to the effect of stellar activity and how it shapes
the strongest spectral lines. For a discussion on this topic, we refer to [31,44] and to the
contribution of V. D’Orazi in this volume.

Figure 1. Abundance ratios [El/Fe] vs. age for the thin-disc stars (binned results, bin 0.1 dex
wide–cyan squares, and individual stars–grey squares) and the open clusters located in the solar
neighbourhood (green circles). The magenta dashed lines are the weighted linear fits to the cumulative
sample of solar neighbourhood clusters and thin-disc field stars for stellar ages <8 Gyr (figure adapted
from [29]).

From a theoretical point of view, an important step in understanding the late-time
increase has been made (first empirically, then quantitatively) by including a higher pro-
duction of s-elements by low-mass stars (M < 1.5 M�), which start contributing later in
the lifetime of the Galaxy (see, e.g., D’Orazi et al. [22], Maiorca et al. [24]) and in which
larger reservoirs of neutrons from the 13C(α, n)16O reaction might be in place. The presence
of an extended 13C pocket requires a very efficient mixing episode and the magnetic buoy-
ancy is one of the most conceivable transport mechanisms able to produce it [9,27,45–50].
The result is also confirmed in independent way from the composition of the presolar
grains [51–53], confirming the major role played by low-mass AGB stars in the s-process
Galactic enrichment. Moreover, to complicate the picture further, the yields of s-process
elements are highly dependent on metallicity, in a non-monotonic way (see. e.g., [7,54,55]),
and thus varied behaviours are expected at different Galactocentric regions, characterised
by diverse star formation history and metallicity, as reflected by the presence of the radial
metallicity gradient [56–58].
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4. Spatial Effect in the Age-[s/Fe] Relationships

The relation between the abundances of neutron-capture elements and stellar ages in
the limited volume around the Sun has been later widely investigated and
confirmed [28,30,39–41,59–61]. The work of Viscasillas Vázquez et al. (submitted, hereafter
VV22), taking advantage of the last Gaia-ESO data release, made use of a sample of open
clusters covering a wide range of ages (0.1–7 Gyr) and Galactocentric distances (5–20 kpc),
to extend the relationships between age and [s/Fe] in different regions of the disc. The
results are summarised in Figure 2 (for full details see VV22), in which the cluster sample is
divided in three Galactocentric regions: an outer region of the Galactic disc, which includes
30 OCs located at a Galactocentric distance RGC > 9 kpc; a central region, in which our Sun
is located, which includes 20 OCs at 7 ≤ RGC ≤ 9 kpc; and an inner region, with 12 OCs
at RGC < 7 kpc. The figure shows some important results: (i) the maximum enrichment
(intercept of the fit) varies with the Galactocentric distance, and the highest values of [s/Fe]
are reached in the outer disc for all the considered elements; (ii) although in each radial
bin there is a well-defined relation between age and abundance ratios, its slope varies
with RGC; (iii) there are differences between the elements of the first and second peaks,
and, on average, the slope of the relation involving the first-peak elements is flatter than
for the second-peak ones; (iv) [Ba/Fe] differs from the other two heavy elements, Ce and
La (barium puzzle). The radial variations are likely related to the interplay between the
metallicity dependence of the s-process yields, which acts differently on the two peaks, and
the radial dependence of the star formation history. A possible explanation was proposed
by Magrini et al. [62]. They used a new set of yields from FRUITY stellar models in which
the magnetic-buoyancy-induced mixing accounts for the formation of the 13C neutron
source in AGB stars [52]. The new yields, included in a Galactic chemical evolution model,
can qualitatively explain the different time evolution of the s-process elements in the inner
part of the disc with respect to the outskirts [62].
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Figure 2. [El/Fe] versus age for the elements of the first peak (Y and Zr, upper panels), of the second
peak (Ba, La, Ce, central panels), and average of first and second peak (bottom panels) in three
Galactocentric bins (outer disc, RGC > 9 kpc; solar neighbdourhood 7≤ RGC ≤ 9 kpc; inner disc,
RGC < 9 kpc). The curves are the weighted linear fits to the data. The data of individual clusters are
shown in transparency in each panel.
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5. The [s/α] Ratios as Age Tracers

One of the hot topics in Galactic Archaeology is the determination of the ages of
stars. Stellar ages, in fact, add the temporal dimension to the complex picture outlined by
positions, distances, kinematics and chemistry provided by the Gaia mission [63–65] and
the ground-based spectroscopic surveys [17–19]. In the last decades, the use of chemical
indicators for stellar ages, the so-called chemical clocks, has been consolidated (see, e.g.,
Delgado Mena et al. [34], Casali et al. [35], Casamiquela et al. [61], Spina et al. [66], Jofré
et al. [67], Casali et al. [68]), providing alternative and complementary estimates of ages to
the classical isochrone fitting. The relation between [s/α] and stellar age is well-established
in the solar neighbourhood, and currently the relevant issue is whether it is universally
valid, or depends on, e.g., the spectral type considered [61,69,70], the metallicity [35,71],
and the stellar population [72–74].

Starting from the work of Casali et al. [35], it was noticed that the relations derived
in the solar neighbourhood fail to reproduce the ages of star clusters in the inner disc.
They concluded that the relationships between age and abundance-ratios are not uni-
versal, and vary with Galactocentric position. In a similar way, Casamiquela et al. [61]
noticed that the dispersion in those relations increases adding star clusters with differ-
ent RGC. Casali et al. [35] attributed the spatial variation of these relations to the change
of the star formation history along RGC, coupled with the non-monotonic metallicity-
dependence of the s-process stellar yields. This suggestion is later theoretically confirmed
by Magrini et al. [62].

The final Gaia-ESO data release produced a new momentum for this topic by providing
the largest sample of open clusters with abundances from high-resolution spectra, including
s-processes. Furthermore, for most of the clusters in Gaia-ESO we can benefit from ages and
distances measured homogeneously with Gaia data [13]. The analysis of VV22, summarised
in Figure 3 in which [Y/Mg] and [Ba/Mg] versus cluster age are shown, clearly illustrates
the differences in the relationships for the cluster samples located in different Galactocentric
regions. The figure shows that there is no single relation that can be adopted in the whole
disk, but that it is fundamental to take into account RGC when one wants to estimate the
age of a star from its [s/α].

1 2 3 4 5 6

0.2

0.0

0.2

0.4 [Y/Mg]
inner
solar
outer

1 2 3 4 5 6

[Ba/Mg]

Age (Gyr)

[s
/

]

Figure 3. [s/α] versus age in three Galactocentric bins (outer disc in pink, RGC > 9 kpc; solar
neighbourhood in green, 7≤ RGC ≤ 9 kpc; inner disc in blue, RGC < 9 kpc). The curves are the
weighted linear fits to the data. In the left-hand panel we show [Y/Mg] versus ages, and in the
right-hand panel [Ba/Mg] versus age. The data of individual clusters (abundance ratios are the mean
values of the clusters members, while ages are from Cantat-Gaudin et al. [13], derived from Gaia DR2
data) are represented by filled circles, in the same colours as the corresponding fits. The shaded areas
indicate the confidence intervals of the fits.

6. Summary, Conclusions and Future Perspectives

Observations of stars in clusters have made an important contribution to our un-
derstanding of the evolution and nucleosynthesis of low- and intermediate-mass stars,
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and their implications in the global chemical evolution of our Galaxy. Since the cluster
populations comprise large ranges in age and RGC, they serve as tests for both the temporal
and spatial evolution of the products of chemical evolution. In the present work, we have
shown some recent observational results which provided strong constraints of the physics
of the AGB stars as producers of heavy s-process elements.

• Observations in young clusters have revealed, for the first time, the important role played
by low-mass stars during their AGB phase in the s-process Galactic enrichment during
recent epochs, providing strong constraints on mixing processes, necessary to produce
an enhanced 13C pocket, with consequent effects on nucleosynthesis [9,22–24,48].

• Large samples of open clusters have confirmed the growth with time of the s-process
abundances, but showing a different time evolution at different RGC. That difference
might be a signature of the non-monotonic metallicity dependence of the AGB yields
for the s-process elements. The s-process yields are indeed driven by the neutron-to-
seed ratio, which depends on the availability of free neutrons (numerator) and on the
abundance of iron seed from which the s-process path starts (denominator). While
the first quantity is of primary origin, the latter depends on the initial metallicity. The
different time evolution of the elements belonging to the first and second peaks made a
further theoretical effort necessary, in which the inclusion of magnetic fields succeeds
in qualitatively reproducing the observations [52,62]. Given the great importance
of the dependence on mass and metallicity of s-process element yields, it will be
necessary in future to produce finer grids of stellar yields, taking also in to account
constraints from other elements, like Pb and Rb, which will allow us to distinguish
between different scenarios.

• Finally, the ratio between s-process and α elements are considered excellent indicators
of stellar age. Observations of these abundance ratios in clusters enabled us to calibrate
relationships between ages and so-called chemical clocks. Recent works ([35] VV22),
using the cluster sample in Gaia-ESO, have revealed that these relationships are not
universal, and that they have a high degree of dependence on Galactocentric distance.
So special care must be taken when inferring ages from them, and it is essential to take
into account the radial region of origin of the stars. This can be particularly relevant
for the older stars on which stellar migration has the greatest influence [75–79]. In
addition, chemical clocks based on Ba and Y might not work for clusters younger than
150 Myr, since their abundances can be modified for other reasons (see [44]).

Many of the absorption lines produced by heavy elements fall in the blue and ultra-
violet (UV) part of the spectrum. Remarkable progress in the study of the formation and
evolution of these elements will be achieved with the next generation of spectrographs that
will include wavelength ranges towards the blue and UV. Among the future instruments,
we recall CUBES (Cassegrain U-Band Efficient Spectrograph), a forthcoming ESO VLT
spectrograph with the goal of covering with a high efficiency the UV ground-based region
(300–400 nm) with intermediate resolution (about R = 20,000) and HRMOS (High Resolution
Multi-Object Spectrograph), a proposed facility instrument for the ESO VLT, with high
spectral resolution (R = 60,000–80,000) and multi-object (50–100) capabilities and stability,
going to blue wavelengths (from 380 nm). Thanks to its high spectral resolution, HRMOS
will be the only instrument that will provide Pb measurements for large samples of stars,
which are crucial for a complete understanding of the production of s-elements from the
main process.
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