602 research outputs found

    An accelerator mode based technique for studying quantum chaos

    Get PDF
    We experimentally demonstrate a method for selecting small regions of phase space for kicked rotor quantum chaos experiments with cold atoms. Our technique uses quantum accelerator modes to selectively accelerate atomic wavepackets with localized spatial and momentum distributions. The potential used to create the accelerator mode and subsequently realize the kicked rotor system is formed by a set of off-resonant standing wave light pulses. We also propose a method for testing whether a selected region of phase space exhibits chaotic or regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp. to the figures) to aid clarity; accepted for publication in Physical Review A (due out on January 1st 2003

    Experimental observation of high-order quantum accelerator modes.

    Get PDF
    Using a freely falling cloud of cold cesium atoms periodically kicked by pulses from a vertical standing wave of laser light, we present the first experimental observation of high-order quantum accelerator modes. This confirms the recent prediction by Fishman, Guarneri, and Rebuzzini [Phys. Rev. Lett.10.1103/PhysRevLett.89.084101 89, 084101 (2002)]. We also show how these accelerator modes can be identified with the stable regions of phase space in a classical-like chaotic system, despite their intrinsically quantum origin

    UK sustainable drainage systems: past, present and future

    Get PDF
    Urban drainage has developed from an engineering discipline, concerned principally with public health and safety outcomes, into a multifaceted vision linking drainage with environmental and wider social and economic imperatives to deliver multifunctional outcomes. UK attention is too often focused on surface water as ‘a problem’, despite international progress and initiatives showing that an ‘opportunity-centred’ approach needs to be taken. Sustainable drainage systems, or ‘Suds’, can, when they are part of an integrated approach to water management, cost-effectively provide many benefits beyond management of water quality and quantity. New tools are available that can design Suds for maximum value to society but this requires greater collaboration across disciplines to seize all of the opportunities available. This paper introduces those tools and a roadmap for their use, including guidance, design objectives and criteria for maximising benefits. These new supporting tools and guidance can help to provide a business case for greater use of Suds in future

    Modelling Housing Market Fundamentals and the Response to Economic and Political Events: Empirical Evidence from Kuwait

    Get PDF
    Kuwait provides an interesting housing market to examine given its place as a major oil producer, its sensitivity to geo-political events and its unusual demographic characteristics. This paper firstly models the dynamics of the Kuwaiti housing market, using an errorcorrection framework. The findings highlight that the market is relatively volatile, with evidence of mean-reverting behaviour. The paper also examines the response of the market to seven regional and local events. Of particular interest is that the one event that results in a consistent significant response is domestic legislation directly concerned with housing. This has a far greater impact than local or regional geo-political events

    Paleo-denudation rates suggest variations in runoff drove aggradation during last glacial cycle, Crete, Greece

    Get PDF
    Fluvial aggradation and incision are often linked to Quaternary climate cycles, but it usually remains unclear whether variations in runoff or sediment supply or both drive channel response to climate variability. Here we quantify sediment supply with paleo-denudation rates and provide geochronological constraints on aggradation and incision from the Sfakia and Elafonisi alluvial-fan sequences in Crete, Greece. We report seven optically stimulated luminescence (OSL)and ten radiocarbon ages, eight 10Be,and eight 36Cl denudation rates from modern channeland terrace sediments. For five samples, 10Be and 36Cl were measured on the same sample by measuring 10Be on chert and 36Cl on calcite. Results indicate relatively steady denudation rates throughout the past 80kyr, but the aggradation and incision history indicates a link with climate shifts. At the Elafonisi fan, we identify four periods of aggradation coinciding with Marine Isotope Stages (MIS) 2, 4, 5a/b, and likely 6, and three periods of incision coinciding with MIS 1, 3, and likely 5e. At the Sfakia fan, rapid aggradation occurred during MIS 2 and 4,followed by incision during MIS 1. Nearby climate and vegetation records show that MIS 2, 4, and 6 stadials were characterized by cold and dry climates with sparse vegetation, whereas forest cover and more humid conditions prevailed during MIS 1, 3, and 5. Our data thus suggest that past changes in climate had little effect on landscape-wide denudation rates but exerted a strong control on the aggradation-incision behaviour of alluvial channels on Crete. During glacial stages, we attribute aggradation to hillslope sediment release promoted by reduced vegetation cover and decreased runoff; conversely, incision occurred during relatively warm and wet stages due to increased runoff. In this landscape, past hydroclimate variations outcompeted changes in sediment supply as the primary driver of alluvial deposition and incision

    Coherent Manipulation of Quantum Delta-kicked Dynamics: Faster-than-classical Anomalous Diffusion

    Full text link
    Large transporting regular islands are found in the classical phase space of a modified kicked rotor system in which the kicking potential is reversed after every two kicks. The corresponding quantum system, for a variety of system parameters and over long time scales, is shown to display energy absorption that is significantly faster than that associated with the underlying classical anomalous diffusion. The results are of interest to both areas of quantum chaos and quantum control.Comment: 6 pages, 4 figures, to appear in Physical Review

    Control of Dynamical Localization

    Full text link
    Control over the quantum dynamics of chaotic kicked rotor systems is demonstrated. Specifically, control over a number of quantum coherent phenomena is achieved by a simple modification of the kicking field. These include the enhancement of the dynamical localization length, the introduction of classical anomalous diffusion assisted control for systems far from the semiclassical regime, and the observation of a variety of strongly nonexponential lineshapes for dynamical localization. The results provide excellent examples of controlled quantum dynamics in a system that is classically chaotic and offer new opportunities to explore quantum fluctuations and correlations in quantum chaos.Comment: 9 pages, 7 figures, to appear in Physical Review

    An updated measurement of the Hubble constant from near-infrared observations of Type Ia supernovae

    Full text link
    We present a measurement of the Hubble constant (H0H_0) using type Ia supernova (SNe Ia) in the near-infrared (NIR) from the recently updated sample of SNe Ia in nearby galaxies with distances measured via Cepheid period-luminosity relations by the SHOES project. We collect public near-infrared photometry of up to 19 calibrator SNe Ia and further 57 SNe Ia in the Hubble flow (z>0.01z>0.01), and directly measure their peak magnitudes in the JJ and HH band by Gaussian processes and spline interpolation. Calibrator peak magnitudes together with Cepheid-based distances are used to estimate the average absolute magnitude in each band, while Hubble-flow SNe are used to constrain the zero-point intercept of the magnitude-redshift relation. Our baseline result of H0H_0 is 72.3±1.472.3\pm1.4 (stat) ±1.4\pm1.4 (syst) km s−1^{-1} Mpc−1^{-1} in the JJ band and 72.3±1.372.3\pm1.3 (stat) ±1.4\pm1.4 (syst) km s−1^{-1} Mpc−1^{-1} in the HH band, where the systematic uncertainties include the standard deviation of up to 21 variations of the analysis, the 0.7\% distance scale systematic from SHOES Cepheid anchors, a photometric zeropoint systematic, and a cosmic variance systematic. Our final measurement represents a measurement with a precision of 2.8\% in both bands. The variant with the largest change in H0H_0 is when limiting the sample to SNe from CSP and CfA programmes, noteworthy because these are the best calibrated, yielding H0∼75H_0\sim75 km s−1^{-1} Mpc−1^{-1} in both bands. We demonstrate stretch and reddening corrections are still useful in the NIR to standardize SN Ia NIR peak magnitudes. Based on our results, in order to improve the precision of the H0H_0 measurement with SNe Ia in the NIR in the future, we would need to increase the number of calibrator SNe Ia, be able to extend the Hubble-Lema\^itre diagram to higher-z, and include standardization procedures to help reducing the NIR intrinsic scatter.Comment: 15 pages, 8 figures. Accepted in A&
    • …
    corecore