34 research outputs found

    Elastic characterization of nanometer-thick polymeric film for astrophysics application with an experimental-numerical method

    Get PDF
    The x-ray detectors on board astrophysics space missions require optical blocking filters that are highly transparent to x-rays. The filter design typically consists of a polymeric film that is a few tens of nanometers thick coated with aluminium. Due to the large size of the filter membrane (from a few tens to a few hundred square centimeters) and the extreme aspect ratio, together with severe loading conditions during launch and different stoichiometries of the polymer that could change its mechanical properties, a characterization study of the employed material is needed. The plane strain bulge test is a well-accepted methodology for the mechanical testing of structures that are less than a micrometer thick, and especially for freestanding membranes. Unfortunately, testing such ultra-thin films is not a simple task due to residual stress and experimental uncertainty at very low pressure. In this work, the elastic properties of an extremely thin (between 45 and 415 nm) membrane made of bare polyimide and coated with aluminium were derived through adopting a combined experimental-numerical methodology based on the bulge test and numerical simulations

    Thermalization of Mesh Reinforced Ultra-Thin Al-Coated Plastic Films: A Parametric Study Applied to the Athena X-IFU Instrument

    Get PDF
    The X-ray Integral Field Unit (X-IFU) is one of the two focal plane detectors of Athena, a large-class high energy astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Program. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that operate at similar to 100 mK inside a sophisticated cryostat. To prevent molecular contamination and to minimize photon shot noise on the sensitive X-IFU cryogenic detector array, a set of thermal filters (THFs) operating at different temperatures are needed. Since contamination already occurs below 300 K, the outer and more exposed THF must be kept at a higher temperature. To meet the low energy effective area requirements, the THFs are to be made of a thin polyimide film (45 nm) coated in aluminum (30 nm) and supported by a metallic mesh. Due to the small thickness and the low thermal conductance of the material, the membranes are prone to developing a radial temperature gradient due to radiative coupling with the environment. Considering the fragility of the membrane and the high reflectivity in IR energy domain, temperature measurements are difficult. In this work, a parametric numerical study is performed to retrieve the radial temperature profile of the larger and outer THF of the Athena X-IFU using a Finite Element Model approach. The effects on the radial temperature profile of different design parameters and boundary conditions are considered: (i) the mesh design and material, (ii) the plating material, (iii) the addition of a thick Y-cross applied over the mesh, (iv) an active heating heat flux injected on the center and (v) a Joule heating of the mesh. The outcomes of this study have guided the choice of the baseline strategy for the heating of the Athena X-IFU THFs, fulfilling the stringent thermal specifications of the instrument

    Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence

    Get PDF
    The evolution of High-Performance Computing (HPC) platforms enables the design and execution of progressively larger and more complex workflow applications in these systems. The complexity comes not only from the number of elements that compose the workflows but also from the type of computations they perform. While traditional HPC workflows target simulations and modelling of physical phenomena, current needs require in addition data analytics (DA) and artificial intelligence (AI) tasks. However, the development of these workflows is hampered by the lack of proper programming models and environments that support the integration of HPC, DA, and AI, as well as the lack of tools to easily deploy and execute the workflows in HPC systems. To progress in this direction, this paper presents use cases where complex workflows are required and investigates the main issues to be addressed for the HPC/DA/AI convergence. Based on this study, the paper identifies the challenges of a new workflow platform to manage complex workflows. Finally, it proposes a development approach for such a workflow platform addressing these challenges in two directions: first, by defining a software stack that provides the functionalities to manage these complex workflows; and second, by proposing the HPC Workflow as a Service (HPCWaaS) paradigm, which leverages the software stack to facilitate the reusability of complex workflows in federated HPC infrastructures. Proposals presented in this work are subject to study and development as part of the EuroHPC eFlows4HPC project.This work has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland and Norway. In Spain, it has received complementary funding from MCIN/AEI/10.13039/501100011033, Spain and the European Union NextGenerationEU/PRTR (contracts PCI2021-121957, PCI2021-121931, PCI2021-121944, and PCI2021-121927). In Germany, it has received complementary funding from the German Federal Ministry of Education and Research (contracts 16HPC016K, 6GPC016K, 16HPC017 and 16HPC018). In France, it has received financial support from Caisse des dĂ©pĂŽts et consignations (CDC) under the action PIA ADEIP (project Calculateurs). In Italy, it has been preliminary approved for complimentary funding by Ministero dello Sviluppo Economico (MiSE) (ref. project prop. 2659). In Norway, it has received complementary funding from the Norwegian Research Council, Norway under project number 323825. In Switzerland, it has been preliminary approved for complimentary funding by the State Secretariat for Education, Research, and Innovation (SERI), Norway. In Poland, it is partially supported by the National Centre for Research and Development under decision DWM/EuroHPCJU/4/2021. The authors also acknowledge financial support by MCIN/AEI /10.13039/501100011033, Spain through the “Severo Ochoa Programme for Centres of Excellence in R&D” under Grant CEX2018-000797-S, the Spanish Government, Spain (contract PID2019-107255 GB) and by Generalitat de Catalunya, Spain (contract 2017-SGR-01414). Anna Queralt is a Serra HĂșnter Fellow.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2018-000797-S)

    Multi-technique investigation of silicon nitride/aluminum membranes as optical blocking filters for high-energy space missions

    Get PDF
    X-ray detectors for space astrophysics missions are susceptible to noise caused by photons with energies outside the operating energy range; for this reason, efficient external optical blocking filters are required to shield the detector from the out-ofband radiation. These filters play a crucial role in meeting the scientific requirements of the X-ray detectors, and their proper operation over the life of the mission is essential for the success of the experimental activity. We studied thin sandwich membranes made of silicon nitride and aluminum as optical blocking filters for high-energy detectors in space missions. Here, we report the results of a multitechnique characterization of SiN membranes with thicknesses in the range from 40 nm to 145 nm coated with few tens of nanometers of aluminum on both sides. In particular, we have measured the X-ray transmission at synchrotron radiation beamlines, the rejection of ultraviolet, visible, and near-infrared radiation, the amount of native oxide on the aluminum surfaces by X-ray photoelectron spectroscopy, the morphology of the sample surfaces by atomic force microscopy, and the aging effects under proton irradiation

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration

    No full text
    In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s diseases with a look toward their potential usefulness in biomarker searching

    Ophidia: Toward Big Data Analytics for eScience

    Get PDF
    AbstractThis work introduces Ophidia, a big data analytics research effort aiming at supporting the access, analysis and mining of scientific (n-dimensional array based) data. The Ophidia platform extends, in terms of both primitives and data types, current relational database system implementations (in particular MySQL) to enable efficient data analysis tasks on scientific array-based data. To enable big data analytics it exploits well-known scientific numerical libraries, a distributed and hierarchical storage model and a parallel software framework based on the Message Passing Interface to run from single tasks to more complex dataflows. The current version of the Ophidia platform is being tested on NetCDF data produced by CMCC climate scientists in the context of the international Coupled Model Intercomparison Project Phase 5 (CMIP5)

    The Role of Glymphatic System in Alzheimer’s and Parkinson’s Disease Pathogenesis

    No full text
    Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia, whilst Parkinson’s disease (PD) is a neurodegenerative movement disorder. These two neurodegenerative disorders share the accumulation of toxic proteins as a pathological hallmark. The lack of definitive disease-modifying treatments for these neurogenerative diseases has led to the hypothesis of new pathogenic mechanisms to target and design new potential therapeutic approaches. The recent observation that the glymphatic system is supposed to be responsible for the movement of cerebrospinal fluid into the brain and clearance of metabolic waste has led to study its involvement in the pathogenesis of these classic proteinopathies. Aquaporin-4 (AQP4), a water channel located in the endfeet of astrocyte membrane, is considered a primary driver of the glymphatic clearance system, and defective AQP4-mediated glymphatic drainage has been linked to proteinopathies. The objective of the present review is to present the recent body of knowledge that links the glymphatic system to the pathogenesis of AD and PD disease and other lifestyle factors such as sleep deprivation and exercise that may influence glymphatic system function. We will also focus on the potential neuroimaging approaches that could identify a neuroimaging marker to detect glymphatic system changes

    Extracellular Vesicles in Multiple Sclerosis: Role in the Pathogenesis and Potential Usefulness as Biomarkers and Therapeutic Tools

    No full text
    Although extracellular vesicles (EVs) were initially relegated to a waste disposal role, nowadays, they have gained multiple fundamental functions working as messengers in intercellular communication as well as exerting active roles in physiological and pathological processes. Accumulating evidence proves the involvement of EVs in many diseases, including those of the central nervous system (CNS), such as multiple sclerosis (MS). Indeed, these membrane-bound particles, produced in any type of cell, carry and release a vast range of bioactive molecules (nucleic acids, proteins, and lipids), conferring genotypic and phenotypic changes to the recipient cell. This means that not only EVs per se but their content, especially, could reveal new candidate disease biomarkers and/or therapeutic agents. This review is intended to provide an overview regarding current knowledge about EVs’ involvement in MS, analyzing the potential versatility of EVs as a new therapeutic tool and source of biomarkers
    corecore