15 research outputs found

    Enhancement of the Zero Phonon Line emission from a Single NV-Center in a Nanodiamond via Coupling to a Photonic Crystal Cavity

    Full text link
    Using a nanomanipulation technique a nanodiamond with a single nitrogen vacancy center is placed directly on the surface of a gallium phosphide photonic crystal cavity. A Purcell-enhancement of the fluorescence emission at the zero phonon line (ZPL) by a factor of 12.1 is observed. The ZPL coupling is a first crucial step towards future diamond-based integrated quantum optical devices

    In situ study of Ge(100) surfaces with tertiarybutylphosphine supply in vapor phase epitaxy ambient

    Get PDF
    GaInP nucleation on Ge(100) often starts by annealing of the Ge(100) substrates under supply of phosphorus precursors. However, the influence on the Ge surface is not well understood. Here, we studied vicinal Ge(100) surfaces annealed under tertiarybutylphosphine (TBP) supply in MOVPE by in situ reflection anisotropy spectroscopy (RAS), X-ray photoelectron spectroscopy (XPS), and low energy electron diffraction (LEED). While XPS reveals a P termination and the presence of carbon on the Ge surface, LEED patterns indicate a disordered surface probably due to by-products of the TBP pyrolysis. However, the TBP annealed Ge(100) surface exhibits a characteristic RA spectrum, which is related to the P termination. RAS allows us to in situ control phosphorus desorption dependent on temperature

    In situ control of As dimer orientation on Ge(100) surfaces

    Get PDF
    We investigated the preparation of single domain Ge(100):As surfaces in a metal-organic vapor phase epitaxy reactor. In situ reflection anisotropy spectra (RAS) of vicinal substrates change when arsenic is supplied either by tertiarybutylarsine or by background As4 during annealing. Low energy electron diffraction shows mutually perpendicular orientations of dimers, scanning tunneling microscopy reveals distinct differences in the step structure, and x-ray photoelectron spectroscopy confirms differences in the As coverage of the Ge(100): As samples. Their RAS signals consist of contributions related to As dimer orientation and to step structure, enabling precise in situ control over preparation of single domain Ge(100): As surfaces

    In situ control of Si(100) and Ge(100) surface preparation for the heteroepitaxy of III-V solar cell architectures

    Get PDF
    Si(100) and Ge(100) substrates essential for subsequent III-V integration were studied in the hydrogen ambient of a metalorganic vapor phase epitaxy reactor. Reflectance anisotropy spectroscopy (RAS) enabled us to distinguish characteristic configurations of vicinal Si(100) in situ: covered with oxide, cleaned by thermal removing in H2, and terminated with monohydrides when cooling in H2 ambient. RAS measurements during cooling in H2 ambient after the oxide removal process revealed a transition from the clean to the monohydride terminated Si(100) surface dependent on process temperature. For vicinal Ge(100) we observed a characteristic RA spectrum after annealing and cooling in H2 ambient. According to results from X-ray photo electron spectroscopy and Fourier-transform infrared spectroscopy the spectrum corresponds to the monohydride terminated Ge(100) surface

    In situ control of the GE(100)surface domain structure for III-V multijunction solar cells

    Get PDF
    Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation

    Benchmarking surface signals when growing GaP on Si in CVD ambients

    Get PDF
    Diese Arbeit untersucht das Aufwachsen von dünnen GaP-Schichten auf Si(100)-Oberflächen mittels metallorganischer Gasphasenabscheidung (MOVPE) und die damit verbundene Entstehung von Antiphasendomänen (APDs). Die Vermessung der Si(100)-Substratoberfläche, der III-V/Si(100)-Grenzfläche und der abgeschiedenen GaP-Filme mit oberflächenempfindlichen Messverfahren dient der Etablierung APD-freier III-V-Heteroepitaxie auf Si(100). Die Präparation reiner Si(100)-Oberflächen frei von Sauerstoff in der MOVPE-Umgebung konnte durch Röntgenphotoelektronenspektroskopie (XPS) belegt werden. Vorwiegend doppelgestufte Substrate wurden sowohl auf 0.1°, 2° als auch 6° fehlorientierten Substraten erzielt. Im Widerspruch zu etablierten Ergebnissen im Ultrahochvakuum richteten sich die Dimere auf 0.1° und 2° Proben senkrecht zu den Doppelstufenkanten aus, vermutlich durch den Einfluss des Wasserstoffs in der MOVPE. Infrarotspektroskopie (FTIR) belegte eine Monohydridterminierung infolge der Präparation, während in-situ Reflexions-Anisotropie-Spectroskopie (RAS) zeigte, dass diese bei höheren Prozesstemperaturen nicht vorliegt. Für die GaP-Heteroepitaxie auf diesen Substraten wurde ein optisches in-situ Messverfahren für die quantitative Bestimmung des APD-Gehaltes entwickelt, welches auf dem eingehenden Verständnis der Rekonstruktionen von GaP(100), der assozierten RAS-Signaturen und dem mit Rastertunnelmikroskopie (STM) und Beugung niedrigenergetischer Elektronen (LEED) etablierten mikroskopischen Verständnis der Oberflächen beruht. Die APD-Quantifizierung mittels RAS wurde durch empirische Korrektur von Interferenzeffekten und optische Modellrechnungen, die auch Rückschlüsse auf die Grenzflächenanisotropie erlauben, deutlich verbessert. Der Abgleich mit unterschiedlichsten Mikroskopiemethoden, basierend auf niedrigenergetischen Elektronen (LEEM), Elektronentransmission (TEM) und Rasterkraftverfahren (AFM) bestätigt die erzielten Ergebnisse.The present work investigates the growth of thin, pseudomorphic GaP films by metalorganic vapor phase epitaxy (MOVPE) on Si(100) surfaces by a variety of surface-sensitive methods and pays with specific attention to the substrate induced anti-phase disorder in this lattice matched model system for III-V/Si(100) heteroepitaxy. Thorough X-ray photoelectron spectroscopy investigations verified the preparation of clean Si(100) surfaces free of oxygen in the MOVPE ambient. Predominantly double-layer stepped Si(100) surfaces were obtained for 0.1°, 2°, and 6° misoriented substrates. In contrast to results established in ultra-high vacuum (UHV), double-layer steps with dimers oriented perpendicular to their edges were observed, which was attributed to the presence of hydrogen as a process gas in the MOVPE environment. A monohydride termination of Si(100) was determined after substrate preparation by Fourier-transform infrared spectroscopy (FTIR), while reflectance anisotropy spectroscopy (RAS) showed the absence of hydrogen termination at higher temperatures. Optical in situ spectroscopy was established as a method for the quantitative evaluation of anti-phase disorder in GaP heteroepitaxy based on a detailed understanding of the GaP(100) surface reconstructions, of the development of the corresponding RAS signatures, and of the associated surface structure studied by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). The in situ RAS quantification was greatly improved by empirical correction of thin film interference and optical model calculations, which also enable extraction of the GaP/Si(100) interface anisotropy. The characterization was supported by benchmarking to atomic force microscopy (AFM) and transmission electron microscopy (TEM) results as well as to low energy electron microscopy (LEEM), which was used for surface sensitive visualization of anti-phase domains on a mesoscopic length scale

    Domain-sensitive in situ observation of layer-by-layer removal at Si(100) in H2 ambient

    Get PDF
    Double-layer step formation on Si(100) substrates is a crucial prerequisite for antiphase-domain free III–V compound semiconductor heteroepitaxy. Due to its unequaled relevance in microelectronics, the (100) oriented surface of silicon is by far the most studied semiconductor surface. However, Si(100) preparation in hydrogen process gas ambient, which is commonly employed for Si and III–V device preparation, is completely different from preparation in ultra-high vacuum due to strong interaction between H2 and the Si surface, leading to a kinetically driven different step formation. Here, we observe chemical layer-by-layer removal of surface atoms from the terraces at the Si(100) surface during annealing in hydrogen ambient. Mutually perpendicularly oriented dimers on subsequently removed monolayers induce oscillations in the in situ reflection anisotropy spectroscopy (RAS) signal. Scanning tunneling microscopy measurements support a model, where surface atom removal proceeds by formation and anisotropic expansion of vacancy islands on the terraces. We determined an activation energy Ed of 2.75 ± 0.20 eV for Si etching in H2 ambient by transient in situ RAS measurements. In situ control of the highly reactive Si(100) surface preparation is essential for subsequent defect-free III–V heteroepitaxy

    High-efficiency water splitting systems

    No full text
    In this chapter, we discuss the prerequisites for high-efficiency water splitting and their implementation with tandem cells based on absorbers of the III-V semiconductor material class. A brief outline of efficiency-limiting factors shows that at a given set of boundary conditions, such as catalyst performance, the optimum tandem absorbers require a very precise control of opto-electronic properties, as facilitated by the III-V compounds. After a short history of high efficiency solar energy conversion, we present recent implementations of highly efficient water splitting systems with solar-to-hydrogen efficiencies of 14-16% together with an outlook on further improvements. Even if other absorber systems turn out to be more cost-competitive, the III-V systems currently serve as a testbed for high-efficiency water splitting in general, with lessons to be learned for catalyst requirements, cell design, and efficiency validation. We conclude with a discussion of appropriate efficiency benchmarking routines, outlining potential pitfalls for multi-junction absorbers and how to avoid them
    corecore