1,062 research outputs found
Dynamical coupled-channel approaches on a momentum lattice
Dynamical coupled-channel approaches are a widely used tool in hadronic
physics that allow to analyze different reactions and partial waves in a
consistent way. In such approaches the basic interactions are derived within an
effective Lagrangian framework and the resulting pseudo-potentials are then
unitarized in a coupled-channel scattering equation. We propose a scheme that
allows for a solution of the arising integral equation in discretized momentum
space for periodic as well as twisted boundary conditions. This permits to
study finite size effects as they appear in lattice QCD simulations. The new
formalism, at this stage with a restriction to S-waves, is applied to
coupled-channel models for the sigma(600), f0(980), and a0(980) mesons, and
also for the Lambda(1405) baryon. Lattice spectra are predicted.Comment: 7 pages, 4 figure
Helicity Amplitudes of the Lambda(1670) and two Lambda(1405) as dynamically generated resonances
We determine the helicity amplitudes A_1/2 and radiative decay widths in the
transition Lambda(1670) to gamma Y (Y=Lambda or Sigma^0). The Lambda(1670) is
treated as a dynamically generated resonance in meson-baryon chiral dynamics.
We obtain the radiative decay widths of the Lambda(1670) to gamma Lambda as 3
\pm 2 keV and to gamma Sigma^0 as 120 \pm 50 keV. Also, the Q^2 dependence of
the helicity amplitudes A_1/2 is calculated. We find that the K Xi component in
the Lambda(1670) structure, mainly responsible for the dynamical generation of
this resonance, is also responsible for the significant suppression of the
decay ratio Gamma_{gamma Lambda}/Gamma_{gamma Sigma^0}. A measurement of the
ratio would, thus, provide direct access to the nature of the Lambda(1670). To
compare the result for the Lambda(1670), we calculate the helicity amplitudes
A_1/2 for the two states of the Lambda(1405). Also, the analytic continuation
of Feynman parameterized integrals of more complicated loop amplitudes to the
complex plane is developed which allows for an internally consistent evaluation
of A_1/2.Comment: 15 pages, 8 figure
Pulsed pumping of a Bose-Einstein condensate
In this work, we examine a system for coherent transfer of atoms into a
Bose-Einstein condensate. We utilize two spatially separate Bose-Einstein
condensates in different hyperfine ground states held in the same dc magnetic
trap. By means of a pulsed transfer of atoms, we are able to show a clear
resonance in the timing of the transfer, both in temperature and number, from
which we draw conclusions about the underlying physical process. The results
are discussed in the context of the recently demonstrated pumped atom laser.Comment: 5 pages, 5 figures, published in Physical Review
Bosenova and three-body loss in a Rb-85 Bose-Einstein condensate
Collapsing Bose-Einstein condensates are rich and complex quantum systems for
which quantitative explanation by simple models has proved elusive. We present
new experimental data on the collapse of high density Rb-85 condensates with
attractive interactions and find quantitative agreement with the predictions of
the Gross-Pitaevskii equation. The collapse data and measurements of the decay
of atoms from our condensates allow us to put new limits on the value of the
Rb-85 three-body loss coefficient K_3 at small positive and negative scattering
lengths.Comment: 6 pages, 5 figure
Scalar mesons moving in a finite volume and the role of partial wave mixing
Phase shifts and resonance parameters can be obtained from finite-volume
lattice spectra for interacting pairs of particles, moving with nonzero total
momentum. We present a simple derivation of the method that is subsequently
applied to obtain the pi pi and pi K phase shifts in the sectors with total
isospin I=0 and I=1/2, respectively. Considering different total momenta, one
obtains extra data points for a given volume that allow for a very efficient
extraction of the resonance parameters in the infinite-volume limit.
Corrections due to the mixing of partial waves are provided. We expect that our
results will help to optimize the strategies in lattice simulations, which aim
at an accurate determination of the scattering and resonance properties.Comment: 19 pages, 12 figure
Optically trapped atom interferometry using the clock transition of large Rb-87 Bose-Einstein condensates
We present a Ramsey-type atom interferometer operating with an optically
trapped sample of 10^6 Bose-condensed Rb-87 atoms. The optical trap allows us
to couple the |F =1, mF =0>\rightarrow |F =2, mF =0> clock states using a
single photon 6.8GHz microwave transition, while state selective readout is
achieved with absorption imaging. Interference fringes with contrast
approaching 100% are observed for short evolution times. We analyse the process
of absorption imaging and show that it is possible to observe atom number
variance directly, with a signal-to-noise ratio ten times better than the
atomic projection noise limit on 10^6 condensate atoms. We discuss the
technical and fundamental noise sources that limit our current system, and
outline the improvements that can be made. Our results indicate that, with
further experimental refinements, it will be possible to produce and measure
the output of a sub-shot-noise limited, large atom number BEC-based
interferometer.
In an addendum to the original paper, we attribute our inability to observe
quantum projection noise to the stability of our microwave oscillator and
background magnetic field. Numerical simulations of the Gross-Pitaevskii
equations for our system show that dephasing due to spatial dynamics driven by
interparticle interactions account for much of the observed decay in fringe
visibility at long interrogation times. The simulations show good agreement
with the experimental data when additional technical decoherence is accounted
for, and suggest that the clock states are indeed immiscible. With smaller
samples of 5 \times 10^4 atoms, we observe a coherence time of {\tau} =
(1.0+0.5-0.3) s.Comment: 22 pages, 6 figures Addendum: 11 pages, 6 figure
Easy collective polarization switching in ferroelectrics
The actual mechanism of polarization switching in ferroelectrics remains a
puzzle for many decades, since the usually estimated barrier for nucleation and
growth is insurmountable ("paradox of the coercive field"). To analyze the
mechanisms of the nucleation we consider the exactly solvable case of a
ferroelectric film with a "dead" layer at the interface with electrodes. The
classical nucleation is easier in this case but still impossible, since the
calculated barrier is huge. We have found that the {\em interaction} between
the nuclei is, however, long range, hence one has to study an {\em ensemble} of
the nuclei. We show that there are the ensembles of small (embryonic) nuclei
that grow {\em without the barrier}. We submit that the interaction between
nuclei is the key point for solving the paradox.Comment: 5 pages, REVTeX 3.1 with one eps-figure. Corrected discussion of
single stripe and cylindrical nuclei, and their interaction. The estimate for
equilibrium density of embryonic nuclei is added. To appear in Phys. Rev.
Letter
- …