602 research outputs found
Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders
Loss of chromosome 7 (-7) or deletion of the long arm (7q-) are recurring chromosome abnormalities in myeloid leukemias. The association of - 7/7q- with myeloid leukemia suggests that these regions contain novel tumor suppressor gene(s), whose loss of function contribute to leukemic transformation or tumor progression. Based on chromosome banding analysis, two critical regions have been identified, one in band q22 and another in bands q32-q35. Presently there are no data available on the molecular delineation of the distal critical region. In this study we analyzed bone marrow and blood samples from 13 patients with myeloid leukemia (de novo myelodysplastic syndrome [MDS], n=3; de novo acute myeloid leukemia [AML], n=9; therapy-related (t-) AML, n=1) which, on chromosome banding analysis, exhibited deletions (n=12) or in one case a balanced translocation involving bands 7q31-qter using fluorescence in situ hybridization (FISH). As probes we used representative clones from a contig map of yeast artificial chromosome (YAC) clones that spans chromosome bands 7q31.1-qter. In the 12 cases with loss of 7q material, we identified a commonly deleted region of approximately 4 to 5 megabasepairs in size encompassing the distal part of 7q35 and the proximal part of 7q36. Furthermore, the breakpoint of the reciprocal translocation from the patient with t-AML was localized to a 1,300-kb sized YAC clone that maps to the proximal boundary of the commonly deleted region. Interestingly, in this case both homologs of chromosome 7 were affected: one was lost (-7) and the second exhibited the t(7q35). The identification and delineation of translocation and deletion breakpoints provides the first step toward the identification of the gene(s) involved in the pathogenesis of 7q35-q36 aberrations in myeloid disorders.link_to_OA_fulltex
Cdx4 Dysregulates Hox Gene Expression and Generates Acute Myeloid Leukemia Alone and in Cooperation with Meis1a in a Murine Model
HOX genes have emerged as critical effectors of leukemogenesis, but the mechanisms that regulate their expression in leukemia are not well understood. Recent data suggest that the caudal homeobox transcription factors CDX1, CDX2, and CDX4, developmental regulators of HOX gene expression, may contribute to HOX gene dysregulation in leukemia. We report here that CDX4 is expressed normally in early hematopoietic progenitors and is expressed aberrantly in approximately 25% of acute myeloid leukemia (AML) patient samples. Cdx4 regulates Hox gene expression in the adult murine hematopoietic system and dysregulates Hox genes that are implicated in leukemogenesis. Furthermore, bone marrow progenitors that are retrovirally engineered to express Cdx4 serially replate in methylcellulose cultures, grow in liquid culture, and generate a partially penetrant, long-latency AML in bone marrow transplant recipients. Coexpression of the Hox cofactor Meis1a accelerates the Cdx4 AML phenotype and renders it fully penetrant. Structure-function analysis demonstrates that leukemic transformation requires intact Cdx4 transactivation and DNA-binding domains but not the putative Pbx cofactor interaction motif. Together, these data indicate that Cdx4 regulates Hox gene expression in adult hematopoiesis and may serve as an upstream regulator of Hox gene expression in the induction of acute leukemia. Inasmuch as many human leukemias show dysregulated expression of a spectrum of HOX family members, these collective findings also suggest a central role for CDX4 expression in the genesis of acute leukemia
Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias
Loss of chromosome 7 (-7) or deletion of its long arm (7q-) are recurring chromosome abnormalities in myeloid disorders, especially in therapy-related myelodysplastic syndrome (t-MDS) and acute myeloid leukemia (t-AML). The association of -7/7q- with myeloid leukemia suggests that these regions contain a novel tumor suppressor gene(s) whose loss of function contributes to leukemic transformation or tumor progression. Based on chromosome banding analysis, two critical regions have been identified: one in band 7q22 and a second in bands 7q32-q35. We analyzed bone marrow and blood samples from 21 patients with myeloid leukemia (chronic myeloid leukemia, n = 2; de novo MDS, n = 4; de novo AML, n = 13: t-AML, n = 2) that on chromosome banding analysis exhibited deletions (n = 19) or reciprocal translocations (n = 2) of band 7q22 using fluorescence in situ hybridization. As probes, we used Alu-polymerase chain reaction products from 22 yeast artificial chromosome (YAC) clones that span chromosome bends 7q21.1-q32, including representative clones from a panel of YACs recognizing a contiguous genomic DNA fragment of 5 to 6 Mb in band 7q22. In the 19 cases with deletions, we identified two distinct commonly deleted regions: one region within band 7q22 was defined by the two CML cases; the second region encompassed a distal part of band 7q22 and the entire band 7q31 and was defined by the MDS/AML cases. The breakpoint of one of the reciprocal translocations was mapped to 7q21.3, which is centromeric to both of the commonly deleted regions. The breakpoint of the second translocation, which was present in unstimulated bone marrow and phytohemagglutinin-stimulated blood of an MDS patient, was localized to a 400-kb genomic segment in 7q22 within the deletion cluster of the MDS/AML cases. In conclusion, our data show marked heterogeneity of 7q22 deletion and translocation breakpoints in myeloid leukemias, suggesting the existence of more than one pathogenetically relevant gene.link_to_OA_fulltex
FLT3 mutations in Early T-Cell Precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors
Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) has been identified as high-risk subgroup of acute T-lymphoblastic leukemia (T-ALL) with a high rate of FLT3-mutations in adults. To unravel the underlying pathomechanisms and the clinical course we assessed molecular alterations and clinical characteristics in a large cohort of ETP-ALL (n = 68) in comparison to non-ETP T-ALL adult patients. Interestingly, we found a high rate of FLT3-mutations in ETP-ALL samples (n = 24, 35%). Furthermore, FLT3 mutated ETP-ALL was characterized by a specific immunophenotype (CD2+/CD5-/CD13+/CD33-), a distinct gene expression pattern (aberrant expression of IGFBP7, WT1, GATA3) and mutational status (absence of NOTCH1 mutations and a low frequency, 21%, of clonal TCR rearrangements). The observed low GATA3 expression and high WT1 expression in combination with lack of NOTCH1 mutations and a low rate of TCR rearrangements point to a leukemic transformation at the pluripotent prothymocyte stage in FLT3 mutated ETP-ALL. The clinical outcome in ETP-ALL patients was poor, but encouraging in those patients with allogeneic stem cell transplantation (3-year OS: 74%). To further explore the efficacy of targeted therapies, we demonstrate that T-ALL cell lines transfected with FLT3 expression constructs were particularly sensitive to tyrosine kinase inhibitors. In conclusion, FLT3 mutated ETP-ALL defines a molecular distinct stem cell like leukemic subtype. These data warrant clinical studies with the implementation of FLT3 inhibitors in addition to early allogeneic stem cell transplantation for this high risk subgroup
A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1).
Acute myeloid leukemia with mutated NPM1 gene and aberrant cytoplasmic expression of nucleophosmin (NPMc(+) acute myeloid leukemia) shows distinctive biological and clinical features. Experimental evidence of the oncogenic potential of the nucleophosmin mutant is, however, still lacking, and it is unclear whether other genetic lesion(s), e.g. FLT3 internal tandem duplication, cooperate with NPM1 mutations in acute myeloid leukemia development. An analysis of age-specific incidence, together with mathematical modeling of acute myeloid leukemia epidemiology, can help to uncover the number of genetic events needed to cause leukemia. We collected data on age at diagnosis of acute myeloid leukemia patients from five European Centers in Germany, The Netherlands and Italy, and determined the age-specific incidence of AML with mutated NPM1 (a total of 1,444 cases) for each country. Linear regression of the curves representing age-specific rates of diagnosis per year showed similar slopes of about 4 on a double logarithmic scale. We then adapted a previously designed mathematical model of hematopoietic tumorigenesis to analyze the age incidence of acute myeloid leukemia with mutated NPM1 and found that a one-mutation model can explain the incidence curve of this leukemia entity. This model fits with the hypothesis that NPMc(+) acute myeloid leukemia arises from an NPM1 mutation with haploinsufficiency of the wild-type NPM1 allele
Recommended from our members
The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML
A unique characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSCs and potentially also in leukemia stem cells. Recently, studies have shed light on developmental molecules and evolutionarily conserved signals as regulators of stem cells in hematopoiesis and leukemia. In this study, we provide evidence that the cell fate determinant Llgl1 (lethal giant larvae homolog 1) plays an important role in regulation of HSCs. Loss of Llgl1 leads to an increase in HSC numbers that show increased repopulation capacity and competitive advantage after transplantation. This advantage increases upon serial transplantation or when stress is applied to HSCs. Llgl1−/− HSCs show increased cycling but neither exhaust nor induce leukemia in recipient mice. Llgl1 inactivation is associated with transcriptional repression of transcription factors such as KLF4 (Krüppel-like factor 4) and EGR1 (early-growth-response 1) that are known inhibitors of HSC self-renewal. Decreased Llgl1 expression in human acute myeloid leukemia (AML) cells is associated with inferior patient survival. Thus, inactivation of Llgl1 enhances HSC self-renewal and fitness and is associated with unfavorable outcome in human AML
Identification of Driver and Passenger Mutations of FLT3 by High-Throughput DNA Sequence Analysis and Functional Assessment of Candidate Alleles
SummaryMutations in the juxtamembrane and kinase domains of FLT3 are common in AML, but it is not known whether alterations outside these regions contribute to leukemogenesis. We used a high-throughput platform to interrogate the entire FLT3 coding sequence in AML patients without known FLT3 mutations and experimentally tested the consequences of each candidate leukemogenic allele. This approach identified gain-of-function mutations that activated downstream signaling and conferred sensitivity to FLT3 inhibition and alleles that were not associated with kinase activation, including mutations in the catalytic domain. These findings support the concept that acquired mutations in cancer may not contribute to malignant transformation and underscore the importance of functional studies to distinguish “driver” mutations underlying tumorigenesis from biologically neutral “passenger” alterations
Circular RNAs of the nucleophosmin (NPM1) gene in acute myeloid leukemia
In acute myeloid leukemia, there is growing evidence for splicing pattern deregulation, including differential expression of linear splice isoforms of the commonly mutated gene nucleophosmin (NPM1). In this study, we detect circular RNAs of NPM1 and quantify circRNA hsa_circ_0075001 in a cohort of NPM1 wild-type and mutated acute myeloid leukemia (n=46). Hsa_circ_0075001 expression correlates positively with total NPM1 expression, but is independent of the NPM1 mutational status. High versus low hsa_circ_0075001 expression defines patient subgroups characterized by distinct gene expression patterns, such as lower expression of components of the Toll-like receptor signaling pathway in high hsa_circ_0075001 expression cases. Global evaluation of circRNA expression in sorted healthy hematopoietic controls (n=10) and acute myeloid leukemia (n=10) reveals circRNA transcripts for 47.9% of all highly expressed genes. While circRNA expression correlates globally with parental gene expression, we identify hematopoietic differentiation-associated as well as acute myeloid leukemia subgroup-specific circRNA signatures
The structure of Herpesvirus Fusion Glycoprotein B-Bilayer Complex reveals the protein-membrane and lateral protein-protein interaction
Glycoprotein B (gB) is a key component of the complex herpesvirus fusion machinery. We studied membrane interaction of two gB ectodomain forms and present an electron cryotomography structure of the gB-bilayer complex. The two forms differed in presence or absence of the membrane proximal region (MPR) but showed an overall similar trimeric shape. The presence of the MPR impeded interaction with liposomes. In contrast, the MPR-lacking form interacted efficiently with liposomes. Lateral interaction resulted in coat formation on the membranes. The structure revealed that interaction of gB with membranes was mediated by the fusion loops and limited to the outer membrane leaflet. The observed intrinsic propensity of gB to cluster on membranes indicates an additional role of gB in driving the fusion process forward beyond the transient fusion pore opening and subsequently leading to fusion pore expansion
Endogenous tumor suppressor microRNA-193b: Therapeutic and prognostic value in acute myeloid leukemia
Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients. We investigated the tumor suppressive function of miR-193b in human AML blasts, patient-derived xenografts, and miR-193b knockout mice in vitro and in vivo. Results miR-193b exerted important, endogenous, tumor-suppressive functions on the hematopoietic system. miR-193b-3p was downregulated in several cytogenetically defined subgroups of pediatric and adult AML, and low expression served as an independent indicator for poor prognosis in pediatric AML (risk ratio 6 standard error, 20.56 6 0.23; P = .016). miR-193b-3p expression improved the prognostic value of the European LeukemiaNet risk-group stratification or a 17-gene leukemic stemness score. In knockout mice, loss of miR-193b cooperated with Hoxa9/Meis1 during leukemogenesis, whereas restoring miR-193b expression impaired leukemic engraftment. Similarly, expression of miR-193b in AML blasts from patients diminished leukemic growth in vitro and in mouse xenografts. Mechanistically, miR-193b induced apoptosis and a G1/S-phase block in various human AML subgroups by targeting multiple factors of the KIT-RAS-RAF-MEK-ERK (MAPK) signaling cascade and the downstream cell cycle regulator CCND1. Conclusion The tumor-suppressive function is independent of patient age or genetics; therefore, restoring miR-193b would assure high antileukemic efficacy by blocking the entire MAPK signaling cascade while preventing the emergence of resistance mechanisms
- …