16 research outputs found

    A PlantSize fenotipizáló program alkalmazása az abiotikus stressztoleranciát biztosító SPQ gének funkcionális jellemzésére

    Get PDF
    The Small Paraquat resistance protein (SPQ) of Lepidium crassifolium has previously been identified due to its capacity to confer paraquat resistance to overexpressing transgenic Arabidopsis plants. LcSPQ overexpression of the closely related but previously unknown Arabidopsis SPQ can also enhance resistance to paraquat, while the knockout Arabidopsis mutant is slightly hypersensitive to this herbicide. The AtSPQ and LcSPQ proteins are composed of 70 and 69 amino acids, respectively, and both of them are localized in the cytosol. Besides being implicated in paraquat response, overexpression of SPQs enhance sensitivity to abscisic acid (ABA), while the T-DNA insertion of AtSPQ is insensitive to ABA. As consequence of ABA hypersensitivity, SPQs can considerably improve drought tolerance by reducing water loss, stabilizing photosynthetic electron transport and enhancing plant survival in water-limited environment. Although deciphering the precise biological function of SPQ proteins requires further studies, our data suggest, that SPQ proteins has pleiotrop function connecting multiple regulatory pathways in stress responses. Enhancement of drought tolerance and paraquat resistance through increased expression of the SPQ genes can have agrobiotechnological perspectives in crop plants. Image analysis of plants through color imaging is an increasingly popular method to define growth parameters, characterize plant development in time. We have developed a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants such as Arabidopsis thaliana. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera. Images are analyzed with the Matlab-based computer application PlantSize, which simultaneously calculates several parameters including projected rosette area (pixel area, fresh weight, convex area and ratio), and color (chlorophyll and anthocyanin contents). Numerical data are exported in MS Excel format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. The developed technology offers a simple, affordable and fast way to measure several morphological and physiological parameters of Arabidopsis plants. The methods are based on non-destructive imaging allowing repeated measurements and monitoring changes of various growth parameters in time. Using the PlantSize technology we were able to study precisely the effects of different stress conditions on Arabidopsis plants and characterize growth and basic physiological parameters of transgenic Arabidopsis plants, expressing Lepidium cDNA clones, which modulate their stress tolerance

    Adult, intensively socialized wolves show features of attachment behaviour to their handler

    Get PDF
    Dogs’ attachment towards humans might be the core of their social skillset, yet the origins of their ability to build such a bond are still unclear. Here we show that adult, hand-reared wolves, similarly to dogs, form individualized relationship with their handler. During separation from their handler, wolves, much like family dogs, showed signs of higher-level stress and contact seeking behaviour, compared to when an unfamiliar person left them. They also used their handler as a secure base, suggesting that the ability to form interspecific social bonds could have been present already in the common ancestor of dogs and wolves. We propose that their capacity to form at least some features of attachment with humans may stem from the ability to form social bond with pack members. This might have been then re-directed to humans during early domestication, providing the basis for the evolution of other socio-cognitive abilities in dogs

    Repetition enhancement to voice identities in the dog brain

    Get PDF
    In the human speech signal, cues of speech sounds and voice identities are conflated, but they are processed separately in the human brain. The processing of speech sounds and voice identities is typically performed by non-primary auditory regions in humans and non-human primates. Additionally, these processes exhibit functional asymmetry in humans, indicating the involvement of distinct mechanisms. Behavioural studies indicate analogue side biases in dogs, but neural evidence for this functional dissociation is missing. In two experiments, using an fMRI adaptation paradigm, we presented awake dogs with natural human speech that either varied in segmental (change in speech sound) or suprasegmental (change in voice identity) content. In auditory regions, we found a repetition enhancement effect for voice identity processing in a secondary auditory region – the caudal ectosylvian gyrus. The same region did not show repetition effects for speech sounds, nor did the primary auditory cortex exhibit sensitivity to changes either in the segmental or in the suprasegmental content. Furthermore, we did not find evidence for functional asymmetry neither in the processing of speech sounds or voice identities. Our results in dogs corroborate former human and non-human primate evidence on the role of secondary auditory regions in the processing of suprasegmental cues, suggesting similar neural sensitivity to the identity of the vocalizer across the mammalian order

    Small Paraquat Resistance Proteins Modulate Paraquat and ABA Responses and Confer Drought Tolerance to Overexpressing Arabidopsis Plants

    Get PDF
    Adaptation of higher plants to extreme environmental conditions is under complex regulation. Several small peptides have recently been described to modulate responses to stress conditions. The Small Paraquat resistance protein (SPQ) of Lepidium crassifolium has previously been identified due to its capacity to confer paraquat resistance to overexpressing transgenic Arabidopsis plants. Here, we show that overexpression of the closely related Arabidopsis SPQ can also enhance resistance to paraquat, while the Arabidopsis spq1 mutant is slightly hypersensitive to this herbicide. Besides being implicated in paraquat response, overexpression of SPQs enhanced sensitivity to abscisic acid (ABA), and the knockout spq1 mutant was less sensitive to ABA. Both Lepidium‐ and Arabidopsis‐derived SPQs could improve drought tolerance by reducing water loss, stabilizing photosynthetic electron transport and enhancing plant viability and survival in a water‐limited environment. Enhanced drought tolerance of SPQ‐overexpressing plants could be confirmed by characterizing various parameters of growth, morphology and photosynthesis using an automatic plant phenotyping platform with RGB and chlorophyll fluorescence imaging. Our results suggest that SPQs can be regulatory small proteins connecting ROS and ABA regulation and through that influence responses to certain stresses

    Predictive Potential of RNA Polymerase B (II) Subunit 1 (RPB1) Cytoplasmic Aggregation for Neoadjuvant Chemotherapy Failure

    Get PDF
    We aimed to investigate the contribution of co-translational protein aggregation to the chemotherapy resistance of tumor cells. Increased co-translational protein aggregation reflects altered translation regulation that may have the potential to buffer transcription under genotoxic stress. As an indicator for such an event, we followed the cytoplasmic aggregation of RPB1, the aggregation-prone largest subunit of RNA polymerase II, in biopsy samples taken from patients with invasive carcinoma of no special type. RPB1 frequently aggregates co-translationally in the absence of proper HSP90 chaperone function or in ribosome mutant cells as revealed formerly in yeast. We found that cytoplasmic foci of RPB1 occur in larger sizes in tumors that showed no regression after therapy. Based on these results, we propose that monitoring the cytoplasmic aggregation of RPB1 may be suitable for determining—from biopsy samples taken before treatment—the effectiveness of neoadjuvant chemotherapy

    PlantSize Offers an Affordable, Non-destructive Method to Measure Plant Size and Color in Vitro

    No full text
    Plant size, shape and color are important parameters of plants, which have traditionally been measured by destructive and time-consuming methods. Non-destructive image analysis is an increasingly popular technology to characterize plant development in time. High throughput automatic phenotyping platforms can simultaneously analyze multiple morphological and physiological parameters of hundreds or thousands of plants. Such platforms are, however, expensive and are not affordable for many laboratories. Moreover, determination of basic parameters is sufficient for most studies. Here we describe a non-invasive method, which simultaneously measures basic morphological and physiological parameters of in vitro cultured plants. Changes of plant size, shape and color is monitored by repeated photography with a commercial digital camera using neutral white background. Images are analyzed with the MatLab-based computer application PlantSize, which simultaneously calculates several parameters including rosette size, convex area, convex ratio, chlorophyll and anthocyanin contents of all plants identified on the image. Numerical data are exported in MS Excel-compatible format. Subsequent data processing provides information on growth rates, chlorophyll and anthocyanin contents. Proof-of-concept validation of the imaging technology was demonstrated by revealing small but significant differences between wild type and transgenic Arabidopsis plants overexpressing the HSFA4A transcription factor or the hsfa4a knockout mutant, subjected to different stress conditions. While HSFA4A overexpression was associated with better growth, higher chlorophyll and lower anthocyanin content in saline conditions, the knockout hsfa4a mutant showed hypersensitivity to various stresses. Morphological differences were revealed by comparing rosette size, shape and color of wild type plants with phytochrome B (phyB-9) mutant. While the technology was developed with Arabidopsis plants, it is suitable to characterize plants of other species including crops, in a simple, affordable and fast way. PlantSize is publicly available (http://www.brc.hu/pub/psize/index.html)
    corecore