75 research outputs found
Frataxin knockdown in human astrocytes triggers cell death and the release of factors that cause neuronal toxicity
© 2014 Elsevier Inc. Friedreich's ataxia (FA) is a recessive, predominantly neurodegenerative disorder caused in most cases by mutations in the first intron of the frataxin (FXN) gene. This mutation drives the expansion of a homozygous GAA repeat that results in decreased levels of FXN transcription and frataxin protein. Frataxin (Fxn) is a ubiquitous mitochondrial protein involved in iron-sulfur cluster biogenesis, and a decrease in the levels of this protein is responsible for the symptoms observed in the disease. Although the pathological manifestations of FA are mainly observed in neurons of both the central and peripheral nervous system, it is not clear if changes in non-neuronal cells may also contribute to the pathogenesis of FA, as recently suggested for other neurodegenerative disorders. Therefore, the aims of this study were to generate and characterize a cell model of Fxn deficiency in human astrocytes (HAs) and to evaluate the possible involvement of non-cell autonomous processes in FA. To knockdown frataxin in vitro, we transduced HAs with a specific shRNA lentivirus (shRNA37), which produced a decrease in both frataxin mRNA and protein expression, along with mitochondrial superoxide production, and signs of p53-mediated cell cycle arrest and apoptotic cell death. To test for non-cell autonomous interactions we cultured wild-type mouse neurons in the presence of frataxin-deficient astrocyte conditioned medium, which provoked a delay in the maturation of these neurons, a decrease in neurite length and enhanced cell death. Our findings confirm a detrimental effect of frataxin silencing, not only for astrocytes, but also for neuron-glia interactions, underlining the need to take into account the role of non-cell autonomous processes in FA.“l'Association Française de l'Ataxie de Friedreich” (AFAF), as well as the Spanish National Research Plan (SAF 2012-38042) and the Autonomous Government of Madrid (S20/BMD-2331). The Center for Biomedical Research on Rare Diseases (“Centro de Investigación Biomédica en Red sobre Enfermedades Raras”, CIBERER) is an initiative supported by the “Instituto de Salud Carlos III”.Peer Reviewe
Enhanced production of herpes simplex virus 1 amplicon vectors by gene modification and optimization of packaging cell growth medium
Herpes simplex virus 1 (HSV-1)-derived amplicon vectors are
unique in their ability to accommodate large DNA molecules
allowing whole genomic loci to be included with all of their regulatory
elements. Additional advantages of these amplicons
include their minimal toxicity and ability to persist as episomes,
with negligible risk of insertional mutagenesis, being
particularly well-suited for gene therapy of neurological disorders
due to their outstanding ability to deliver genes into neurons
and other neural cells. However, extensive gene therapy
application has been hindered by difficulties in vector production.
This work improved HSV-1 amplicons production by genetic
modification of the packaging cell line and optimization
of the culture medium. A stably-transfected Vero 2-2 cell line
overexpressing the anti-apoptotic Bcl-2 protein was generated,
exhibiting an increased resistance to apoptosis, prolonged culture
duration, and a significant improvement in viral vector
production. Additionally, supplementation of the growth medium
with antioxidants, polyamines, amino acids, and reduced
glutathione further increased the yield of packaged amplicon
vectors. With these modifications, HSV-1 amplicons could be
isolated from culture supernatants instead of cell lysates, leading
to vector preparations with higher titer and purity and
paving the way for generation of stable cell lines that are
capable of continuous herpesviral vector productionThis work was supported by grants of the
Spanish National Research Plan (SAF 2015–69361-R), Friedreich
Ataxia Research Alliance (FARA), FARA Ireland, Spanish FEDAES,
GENEFA, and Babel Famil
Future prospects of gene therapy for Friedreich's ataxia
Friedreich’s ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich’s ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich’s ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several
hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich’s ataxia, addressing the main challenges and the most feasible solutions for themComunidad Autónoma de Madrid (NEUROMETAB-CM, B2017/BMD-3700) and Spanish Ministerio de Ciencia e Innovación (MICINN, grant PID2019-111338RB-I00), co-financed by Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (AEI/FEDER, EU). We also acknowledge institutional support to the CBMSO from Fundación Ramón Areces. Gabriel Ocaña-Santero receive
Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?
Olfactory ensheathing glia (OEG) accompany olfactory growing axons in their entry to the adult mammalian central nervous system (CNS). Due to this special characteristic, considerable attention has been focused on the possibility of using OEG for CNS regeneration. OEG present a large heterogeneity in culture with respect to their cellular morphology and expressed molecules. The specific characteristics of OEG responsible for their regenerative properties have to be defined. These properties probably result from the combination of several factors: molecular composition of the membrane (expressing adhesion molecules as PSA-NCAM, L1 and/or others) combined with their ability to reduce glial scarring and to accompany new growing axons into the host CNS. Their capacity to produce some neurotrophic factors might also account for their ability to produce CNS regeneration
Phosphorylation of a neuronal-specific β-tubulin isotype
Adult rats were intracraneally injected with [32P] phosphate and brain microtubules isolated. The electrophoretically purified, in vivo phospholabeled, beta-tubulin was digested with the V8-protease and the labeled peptide purified by reversed-phase liquid chromatography. Its amino acid sequence corresponds to the COOH-terminal sequence of a minor neuronal beta 3-tubulin isoform from chicken and human. The phosphorylation site was at serine 444. A synthetic peptide with sequence EMYEDDEEESESQGPK, corresponding to that of the COOH terminus of beta 3-tubulin, was efficiently phosphorylated in vitro by casein kinase II at the same serine 444. The functional meaning of tubulin phosphorylation is still unclear. However, the modification of the protein takes place after microtubule assembly, and phosphorylated tubulin is mainly present in the assembled microtubule protein fraction
The smoothened agonist SAG reduces mitochondrial dysfunction and neurotoxicity of frataxin-deficient astrocytes
Background: Friedreich’s ataxia is a rare hereditary neurodegenerative disease caused by decreased levels of the mitochondrial protein frataxin. Similar to other neurodegenerative pathologies, previous studies suggested that astrocytes might contribute to the progression of the disease. To fully understand the mechanisms underlying neurodegeneration in Friedreich’s ataxia, we investigated the reactivity status and functioning of cultured human astrocytes after frataxin depletion using an RNA interference-based approach and tested the effect of pharmacologically modulating the SHH pathway as a novel neuroprotective strategy. Results: We observed loss of cell viability, mitochondrial alterations, increased autophagy and lipid accumulation in cultured astrocytes upon frataxin depletion. Besides, frataxin-deficient cells show higher expression of several A1-reactivity markers and release of pro-inflammatory cytokines. Interestingly, most of these defects were prevented by chronically treating the cells with the smoothened agonist SAG. Furthermore, in vitro culture of neurons with conditioned medium from frataxin-deficient astrocytes results in a reduction of neuronal survival, neurite length and synapse formation. However, when frataxin-deficient astrocytes were chronically treated with SAG, we did not observe these alterations in neurons. Conclusions: Our results demonstrate that the pharmacological activation of the SHH pathway could be used as a target to modulate astrocyte reactivity and neuron–glia interactions to prevent neurodegeneration in Friedreich’s ataxiaThis study was supported by research grants from Comunidad Autónoma de Madrid (NEUROMETAB-CM, B2017/BMD-3700) to J.D-N., Spanish Ministerio de Ciencia e Innovación (MICINN, grant PID2019-111338RB-I00) to J.D-N. and A.G-C., Instituto de Salud Carlos III (PI20/00934, co-funded by Fondo Europeo de Desarrollo Regional, FEDER) and Association Française de l’Ataxie de Friedreich (AFAF) to F.L. A.V-A. is supported by a contract from Comunidad Autónoma de Madrid (NEUROMETAB-CM, B2017/BMD-3700
Delivery of the 135kb human frataxin genomic DNA locus gives rise to different frataxin isoforms
© 2015 Elsevier Inc. Friedreich's ataxia (FRDA) is the most common form of hereditary ataxia caused by recessive mutations in the FXN gene. Recent results have indicated the presence of different frataxin isoforms due to alternative gene expression mechanisms. Our previous studies demonstrated the advantages of using high-capacity herpes simplex virus type 1 (HSV-1) amplicon vectors containing the entire FXN genomic locus (iBAC-FXN) as a gene-delivery vehicle capable of ensuring physiologically-regulated and long-term persistence. Here we describe how expression from the 135. kb human FXN genomic locus produces the three frataxin isoforms both in cultured neuronal cells and also in vivo. Moreover, we also observed the correct expression of these frataxin isoforms in patient-derived cells after delivery of the iBAC-. FXN. These results lend further support to the potential use of HSV-1 vectors containing entire genomic loci whose expression is mediated by complex transcriptional and posttranscriptional mechanisms for gene therapy applications.Spanish National Research Plan (SAF 2012-38042) and the Autonomous Government of Madrid (S2010/BMD-2331). The Center for Biomedical Research on Rare Diseases (“Centro de Investigación Biomédica en Red sobre Enfermedades Raras”, CIBERER) is an initiative supported by the “Instituto de Salud Carlos III”.Peer Reviewe
Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in pathological conditions such as diabetes and Alzheimer's disease. We report the characterization of a GSK3 inhibitor, AR-A014418, which inhibits GSK3 (IC50 = 104 ± 27 nM), in an ATP-competitive manner (K i = 38 nM). AR-A014418 does not significantly inhibit cdk2 or cdk5 (IC50 > 100 μM) or 26 other kinases demonstrating high specificity for GSK3. We report the co-crystallization of AR-A014418 with the GSK3β protein and provide a description of the interactions within the ATP pocket, as well as an understanding of the structural basis for the selectivity of AR-A014418. AR-A014418 inhibits tau phosphorylation at a GSK3-specific site (Ser-396) in cells stably expressing human four-repeat tau protein. AR-A014418 protects N2A neuroblastoma cells against cell death mediated by inhibition of the phosphatidylinositol 3-kinase/protein kinase B survival pathway. Furthermore, AR-A014418 inhibits neurodegeneration mediated by β-amyloid peptide in hippocampal slices. AR-A014418 may thus have important applications as a tool to elucidate the role of GSK3 in cellular signaling and possibly in Alzheimer's disease. AR-A014418 is the first compound of a family of specific inhibitors of GSK3 that does not significantly inhibit closely related kinases such as cdk2 or cdk5.Supported by grants from the Comunidad de Madrid, the Fundacion “La Caixa,” the Lilly Foundation, the Spanish Comision Interministerial de Ciencia y Tecnologia, and an institutional grant from the Fundacion Ramon Areces.Peer reviewe
Effectiveness of a strategy that uses educational games to implement clinical practice guidelines among Spanish residents of family and community medicine (e-EDUCAGUIA project):A clinical trial by clusters
This study was funded by the Fondo de Investigaciones Sanitarias FIS Grant Number PI11/0477 ISCIII.-REDISSEC Proyecto RD12/0001/0012 AND FEDER Funding.Background: Clinical practice guidelines (CPGs) have been developed with the aim of helping health professionals, patients, and caregivers make decisions about their health care, using the best available evidence. In many cases, incorporation of these recommendations into clinical practice also implies a need for changes in routine clinical practice. Using educational games as a strategy for implementing recommendations among health professionals has been demonstrated to be effective in some studies; however, evidence is still scarce. The primary objective of this study is to assess the effectiveness of a teaching strategy for the implementation of CPGs using educational games (e-learning EDUCAGUIA) to improve knowledge and skills related to clinical decision-making by residents in family medicine. The primary objective will be evaluated at 1 and 6months after the intervention. The secondary objectives are to identify barriers and facilitators for the use of guidelines by residents of family medicine and to describe the educational strategies used by Spanish teaching units of family and community medicine to encourage implementation of CPGs. Methods/design: We propose a multicenter clinical trial with randomized allocation by clusters of family and community medicine teaching units in Spain. The sample size will be 394 residents (197 in each group), with the teaching units as the randomization unit and the residents comprising the analysis unit. For the intervention, both groups will receive an initial 1-h session on clinical practice guideline use and the usual dissemination strategy by e-mail. The intervention group (e-learning EDUCAGUIA) strategy will consist of educational games with hypothetical clinical scenarios in a virtual environment. The primary outcome will be the score obtained by the residents on evaluation questionnaires for each clinical practice guideline. Other included variables will be the sociodemographic and training variables of the residents and the teaching unit characteristics. The statistical analysis will consist of a descriptive analysis of variables and a baseline comparison of both groups. For the primary outcome analysis, an average score comparison of hypothetical scenario questionnaires between the EDUCAGUIA intervention group and the control group will be performed at 1 and 6months post-intervention, using 95% confidence intervals. A linear multilevel regression will be used to adjust the model. Discussion: The identification of effective teaching strategies will facilitate the incorporation of available knowledge into clinical practice that could eventually improve patient outcomes. The inclusion of information technologies as teaching tools permits greater learning autonomy and allows deeper instructor participation in the monitoring and supervision of residents. The long-term impact of this strategy is unknown; however, because it is aimed at professionals undergoing training and it addresses prevalent health problems, a small effect can be of great relevance. Trial registration: ClinicalTrials.gov: NCT02210442.Publisher PDFPeer reviewe
Caracterización de la proteína MAP-1B de tejido nervioso. Identificación de proteínas relacionadas en otros tejidos
Tesis doctoral inédita leida en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 28-11-198
- …