7 research outputs found

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.journal articl

    Building consensus around the assessment and interpretation of Symbiodiniaceae diversity

    Get PDF
    Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships

    Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates

    No full text
    Light and temperature are major drivers in the ecology and biogeography of symbiotic dinoflagellates living in corals and other cnidarians. We examined variations in physiology among 11 strains comprising five species of clade A Symbiodinium. We grew cultures at 26oC (control) and 32oC (high temperature) over a duration of 18 days while measuring growth and photochemical efficiency (Fv/Fm). Responses to thermal stress ranged from susceptible to tolerant across species and strains. Most strains exhibited a decrease in cell densities and Fv/Fm when grown at 32oC. Tolerance to high temperature (T32) was calculated for all strains, ranging from 0 (unable to survive at high temperature) to 1 (able survive at high temperature). There was substantial variation in thermotolerance across species and among strains. One strain had a T32 close to 1, indicating that growth was not reduced at 32oC for only this one strain. To evaluate the combined effect of temperature and light on physiological stress, we selected three strains with different levels of thermotolerance (tolerant, intermediate and susceptible) and grew them under five different light intensities (65, 80, 100, 240 and 443 μmol quanta m-2 s-1) at 26 and 32oC. High irradiance exacerbated the effect of high temperature, particularly in strains from thermally sensitive species. This work further supports the recognition that broad physiological differences exist not only among species within Symbiodinium clades, but also among strains within species demonstrating that thermotolerance varies widely between species and among strains within species

    Relative population growth rates, therotolerance, and relative photochemical efficiency;Fv/Fm changes between three strains of Clade A under different growth lights and temperatures from Intraspecific and interspecific variation in thermotolerance and photoacclimation in <i>Symbiodinium</i> dinoflagellates

    No full text
    Light and temperature are major drivers in the ecology and biogeography of symbiotic dinoflagellates living in corals and other cnidarians. We examined variations in physiology among 11 strains comprising five species of clade A <i>Symbiodinium</i>. We grew cultures at 26°C (control) and 32°C (high temperature) over a duration of 18 days while measuring growth and photochemical efficiency (Fv/Fm). Responses to thermal stress ranged from susceptible to tolerant across species and strains. Most strains exhibited a decrease in cell densities and Fv/Fm when grown at 32°C. Tolerance to high temperature (<i>T</i><sub>32</sub>) was calculated for all strains, ranging from 0 (unable to survive at high temperature) to 1 (able survive at high temperature). There was substantial variation in thermotolerance across species and among strains. One strain had a <i>T</i><sub>32</sub> close to 1, indicating that growth was not reduced at 32°C for only this one strain. To evaluate the combined effect of temperature and light on physiological stress, we selected three strains with different levels of thermotolerance (tolerant, intermediate and susceptible) and grew them under five different light intensities (65, 80, 100, 240 and 443 μmol quanta m<sup>−2</sup> s<sup>−1</sup>) at 26 and 32°C. High irradiance exacerbated the effect of high temperature, particularly in strains from thermally sensitive species. This work further supports the recognition that broad physiological differences exist not only among species within <i>Symbiodinium</i> clades, but also among strains within species demonstrating that thermotolerance varies widely between species and among strains within species

    Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 M<sup>PRO</sup>

    No full text
    El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.SARS-CoV-2 main protease is a common target for inhibition assays due to its high conservation among coronaviruses. Since flavonoids show antiviral activity, several in silico works have proposed them as potential SARS-CoV-2 main protease inhibitors. Nonetheless, there is reason to doubt certain results given the lack of consideration for flavonoid promiscuity or main protease plasticity, usage of short library sizes, absence of control molecules and/or the limitation of the methodology to a single target site. Here, we report a virtual screening study where dorsilurin E, euchrenone a11, sanggenol O and CHEMBL2171598 are proposed to inhibit main protease through different pathways. Remarkably, novel structural mechanisms were observed after sanggenol O and CHEMBL2171598 bound to experimentally proven allosteric sites. The former drastically affected the active site, while the latter triggered a hinge movement which has been previously reported for an inactive SARS-CoV main protease mutant. The use of a curated database of 4.8 k flavonoids, combining two well-known docking software (AutoDock Vina and AutoDock4.2), molecular dynamics and MMPBSA, guaranteed an adequate analysis and robust interpretation. These criteria can be considered for future screening campaigns against SARS-CoV-2 main protease.Consejo Nacional de Ciencia, Tecnología e Innovación TecnológicaRevisión por pare
    corecore