16 research outputs found

    Improving the efficacy of daratumumab in multiple myeloma: assessment of a new therapeutic combination and characterization of resistance mechanisms

    Get PDF
    [ES]La introducción de enfoques inmunoterapéuticos en el arsenal terapéutico del MM ha mejorado notablemente la tasa y profundidad de respuesta, así como la supervivencia de los pacientes. De hecho, entre los diferentes tratamientos inmunoterapéuticos, el anticuerpo monoclonal daratumumab ha demostrado eficacia tanto en monoterapia como en terapias combinadas. En el caso de los anticuerpos monoclonales, la expresión de sus dianas específicas por parte de las células tumorales, las propiedades inmunogénicas de estas células y el estado inmunitario de los pacientes influyen en la eficacia de estos tratamientos. Por tanto, los fármacos capaces de favorecer alguno o todos estos aspectos son potencialmente buenos candidatos para ser combinados con anticuerpos monoclonales. A pesar de los buenos resultados obtenidos con los tratamientos de inmunoterapia en general, y con los anticuerpos monoclonales en particular, el MM sigue considerándose una enfermedad incurable en la gran mayoría de los casos, debido, entre otros, a la presencia de resistencia (primaria o adquirida) a los fármacos disponibles. Sin embargo, los mecanismos implicados en la adquisición de resistencia a los anticuerpos monoclonales aún no se conocen bien. Por tanto, el estudio de estos mecanismos y la búsqueda de estrategias encaminadas a superarlos, constituye un campo de investigación clave en el escenario terapéutico actual. Teniendo esto en cuenta, los objetivos específicos propuestos fueron: OBJETIVO 1: Analizar el posible papel de tinostamustina, un inhibidor de histona desacetilasa alquilante, en la mejora del efecto antimieloma de daratumumab. 1.1. Evaluar el efecto de tinostamustina sobre la expresión de membrana de CD38 en líneas celulares de MM y en células primarias de pacientes con MM. 1.2. Explorar si el tratamiento de las células de mieloma con tinostamustina aumenta la inmunogenicidad de estas células a través del análisis de moléculas de superficie relacionadas con el sistema inmunitario, como los ligandos de los receptores de células NK. 1.3. Determinar si tinostamustina potencia el efecto antimieloma de daratumumab a través de sus diferentes mecanismos de acción mediante experimentos in vitro y ex vivo. 1.4. Evaluar la eficacia de la doble combinación de tinostamustina y daratumumab en modelos in vivo. OBJETIVO 2: Identificar las causas moleculares de la resistencia adquirida a daratumumab y explorar nuevas estrategias para revertirla. 2.1. Generar un modelo in vitro de resistencia adquirida a la CDC mediada por daratumumab y caracterizar su inmunofenotipo y perfil de sensibilidad a los mecanismos de acción adicionales de daratumumab. 2.2. Analizar los mecanismos implicados en la desregulación de CD38, diana de daratumumab, utilizando el modelo de resistencia generado. 2.3. Identificar los genes implicados en la resistencia adquirida a la CDC mediada por daratumumab y evaluar su implicación funcional. 2.4. Establecer nuevos modelos in vitro de sensibilidad a CDC mediada por daratumumab

    Biological Background of Resistance to Current Standards of Care in Multiple Myeloma

    Get PDF
    A high priority problem in multiple myeloma (MM) management is the development of resistance to administered therapies, with most myeloma patients facing successively shorter periods of response and relapse. Herewith, we review the current knowledge on the mechanisms of resistance to the standard backbones in MM treatment: proteasome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies (mAbs). In some cases, strategies to overcome resistance have been discerned, and an effort should be made to evaluate whether resensitization to these agents is feasible in the clinical setting. Additionally, at a time in which we are moving towards precision medicine in MM, it is equally important to identify reliable and accurate biomarkers of sensitivity/refractoriness to these main therapeutic agents with the goal of having more efficacious treatments and, if possible, prevent the development of relapse.Funding: E.M.O. was supported by an Inplant grant fromIDIVALand TP by a grant fromAECC(INVES18043PAÍN). E.M.A. and A.D.-T. received a grant from the Regional Council from Castilla y León, and P.M. from the Institute for Biomedical Research from Salamanca. This work was supported by funding from Spanish FIS (PI15/00067, PI15/02156 and PI18/01600) and FEDER, AECC (GCB120981SAN), Ramón Areces Foundation (FRA16/003); the Regional Council from Castilla y León (GRS 1604/A/17, GRS 1880/A/18 and Centro en Red de Medicina Regenerativa y Terapia Celular), and the Institute for Biomedical Research from Salamanca (IBY17/00008)

    Protein Translation Inhibition is Involved in the Activity of the Pan-PIM Kinase Inhibitor PIM447 in Combination with Pomalidomide-Dexamethasone in Multiple Myeloma

    Get PDF
    Background: Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. Methods: Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. Results: Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. Conclusions: Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.This work was supported by funding from Spanish FIS (PI15/00067, PI15/02156 and PI18/01600) and FEDER, AECC (GCB120981SAN), Junta de Castilla y León, Consejería de Sanidad (GRS 862/A/13 and BIO/SA05/14), Fundación Memoria de D. Samuel Solórzano Barruso of the University of Salamanca (FS/22-2015), Fundación Ramón Areces (FRA16/003), Sociedad Española de Hematología y Hemoterapia and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León. E.M.O. was supported by an Inplant grant from IDIVAL. T.P. is supported by a grant from AECC (INVES18043PAÍN)

    The kinesin spindle protein inhibitor filanesib enhances the activity of pomalidomide and dexamethasone in multiple myeloma

    Get PDF
    [EN]Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients.Array BioPharma, the Spanish ISCIII-FIS and FEDER, the Spanish RTICC, Spanish Association Against Cancer (AECC) and the Regional Council of Castilla y León (Consejería de Medicina y Educación)

    Stroma-Mediated Resistance to S63845 and Venetoclax through MCL-1 and BCL-2 Expression Changes Induced by miR-193b-3p and miR-21-5p Dysregulation in Multiple Myeloma.

    Get PDF
    BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM

    Preclinical evaluation of the simultaneous inhibition of MCL-1 and BCL-2 with the combination of S63845 and venetoclax in multiple myeloma

    Get PDF
    This work was supported by the Spanish ISCIII-FIS and FEDER Funds (PI 15/00067 and PI 15/02156) and the Regional Health Council of Castilla y León (GRS 1604/A/17). EMA was supported by a grant from the Regional Education Council of Castilla y León co-financed by the European Social Fund

    Management of acute diverticulitis with pericolic free gas (ADIFAS). an international multicenter observational study

    Get PDF
    Background: There are no specific recommendations regarding the optimal management of this group of patients. The World Society of Emergency Surgery suggested a nonoperative strategy with antibiotic therapy, but this was a weak recommendation. This study aims to identify the optimal management of patients with acute diverticulitis (AD) presenting with pericolic free air with or without pericolic fluid. Methods: A multicenter, prospective, international study of patients diagnosed with AD and pericolic-free air with or without pericolic free fluid at a computed tomography (CT) scan between May 2020 and June 2021 was included. Patients were excluded if they had intra-abdominal distant free air, an abscess, generalized peritonitis, or less than a 1-year follow-up. The primary outcome was the rate of failure of nonoperative management within the index admission. Secondary outcomes included the rate of failure of nonoperative management within the first year and risk factors for failure. Results: A total of 810 patients were recruited across 69 European and South American centers; 744 patients (92%) were treated nonoperatively, and 66 (8%) underwent immediate surgery. Baseline characteristics were similar between groups. Hinchey II-IV on diagnostic imaging was the only independent risk factor for surgical intervention during index admission (odds ratios: 12.5, 95% CI: 2.4-64, P =0.003). Among patients treated nonoperatively, at index admission, 697 (94%) patients were discharged without any complications, 35 (4.7%) required emergency surgery, and 12 (1.6%) percutaneous drainage. Free pericolic fluid on CT scan was associated with a higher risk of failure of nonoperative management (odds ratios: 4.9, 95% CI: 1.2-19.9, P =0.023), with 88% of success compared to 96% without free fluid ( P <0.001). The rate of treatment failure with nonoperative management during the first year of follow-up was 16.5%. Conclusion: Patients with AD presenting with pericolic free gas can be successfully managed nonoperatively in the vast majority of cases. Patients with both free pericolic gas and free pericolic fluid on a CT scan are at a higher risk of failing nonoperative management and require closer observation

    Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression

    No full text
    © 2021 by the authors.Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients’ immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.A.D.-T was supported by a fellowship from the Regional Education Council of Castilla y Léon co-financed by the European Social Fund; T.P. is supported by a grant from Asociación Española Contra el Cáncer (AECC) (INVES18043PAÍN). This study was funded by the Instituto de Salud Carlos III and co-financed by FEDER (PI18/01600 and PI19/01384); by the AECC (Proyectos Estratégicos: PROYE20047GUTI); by Fundación Ramón Areces (FRA16/003); and by the Gerencia Regional de Salud, Junta de Castilla y León grants (GRS 2066/A/19)

    The mRNA-1273 vaccine induces cross-variant antibody responses to SARS-CoV-2 with distinct profiles in individuals with or without pre-existing immunity

    Get PDF
    Data de publicació electrònica: 03-09-2021mRNA-based vaccines effectively induce protective neutralizing antibodies against SARS-CoV-2, the etiological agent of COVID-19. Yet, the kinetics and compositional patterns of vaccine-induced antibody responses to the original strain and emerging variants of concern remain largely unknown. Here we characterized serum antibody classes and subclasses targeting the spike receptor-binding domain of SARS-CoV-2 wild type and α, β, γ and δ variants in a longitudinal cohort of SARS-CoV-2 naïve and COVID-19 recovered individuals receiving the mRNA-1273 vaccine. We found that mRNA-1273 vaccine recipients developed a SARS-CoV-2-specific antibody response with a subclass profile comparable to that induced by natural infection. Importantly, these antibody responses targeted both wild type SARS-CoV-2 as well as its α, β, γ and δ variants. Following primary vaccination, individuals with pre-existing immunity showed higher induction of all antibodies but IgG3 compared to SARS-CoV-2-naïve subjects. Unlike naïve individuals, COVID-19 recovered subjects did not mount a recall antibody response upon the second vaccine dose. In these individuals, secondary immunization resulted in a slight reduction of IgG1 against the receptor-binding domain of β and γ variants. Despite the lack of recall humoral response, vaccinees with pre-existing immunity still showed higher titers of IgG1 and IgA to all variants analyzed compared to fully vaccinated naïve individuals. Our findings indicate that mRNA-1273 vaccine triggered cross-variant antibody responses with distinct profiles in vaccinees with or without pre-existing immunity and suggest that individuals with prior history of SARS-CoV-2 infection may not benefit from the second mRNA vaccine dose with the current standard regimen.This study was supported by the COVID-19 call grant from Generalitat de Catalunya, Department of Health (to GM), grant Miguel Servet research program (to GM) and by National Health Institute Carlos III (ISCIII) through the project COV20_00508 grant (Co-funded by European Regional Development Fund/European Social Fund “a way to make Europe) (to RG
    corecore