13,981 research outputs found

    Fast generation of spin-squeezed states in bosonic Josephson junctions

    Get PDF
    We describe methods for fast production of highly coherent-spin-squeezed many-body states in bosonic Josephson junctions (BJJs). We start from the known mapping of the two-site Bose-Hubbard (BH) Hamiltonian to that of a single effective particle evolving according to a Schr\"odinger-like equation in Fock space. Since, for repulsive interactions, the effective potential in Fock space is nearly parabolic, we extend recently derived protocols for shortcuts to adiabatic evolution in harmonic potentials to the many-body BH Hamiltonian. The best scaling of the squeezing parameter for large number of atoms N is \xi^2_S ~ 1/N.Comment: Improved and enlarged version, accepted at Phys. Rev.

    2D granular flows with the μ(I)\mu(I) rheology and side walls friction: a well balanced multilayer discretization

    Get PDF
    We present here numerical modelling of granular flows with the μ(I)\mu(I) rheology in confined channels. The contribution is twofold: (i) a model to approximate the Navier-Stokes equations with the μ(I)\mu(I) rheology through an asymptotic analysis. Under the hypothesis of a one-dimensional flow, this model takes into account side walls friction; (ii) a multilayer discretization following Fern\'andez-Nieto et al. (J. Fluid Mech., vol. 798, 2016, pp. 643-681). In this new numerical scheme, we propose an appropriate treatment of the rheological terms through a hydrostatic reconstruction which allows this scheme to be well-balanced and therefore to deal with dry areas. Based on academic tests, we first evaluate the influence of the width of the channel on the normal profiles of the downslope velocity thanks to the multilayer approach that is intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity profiles. We also check the well balance property of the proposed numerical scheme. We show that approximating side walls friction using single-layer models may lead to strong errors. Secondly, we compare the numerical results with experimental data on granular collapses. We show that the proposed scheme allows us to qualitatively reproduce the deposit in the case of a rigid bed (i. e. dry area) and that the error made by replacing the dry area by a small layer of material may be large if this layer is not thin enough. The proposed model is also able to reproduce the time evolution of the free surface and of the flow/no-flow interface. In addition, it reproduces the effect of erosion for granular flows over initially static material lying on the bed. This is possible when using a variable friction coefficient μ(I)\mu(I) but not with a constant friction coefficient

    Derivation of a multilayer approach to model suspended sediment transport: application to hyperpycnal and hypopycnal plumes

    Full text link
    We propose a multi-layer approach to simulate hyperpycnal and hypopycnal plumes in flows with free surface. The model allows to compute the vertical profile of the horizontal and the vertical components of the velocity of the fluid flow. The model can describe as well the vertical profile of the sediment concentration and the velocity components of each one of the sediment species that form the turbidity current. To do so, it takes into account the settling velocity of the particles and their interaction with the fluid. This allows to better describe the phenomena than a single layer approach. It is in better agreement with the physics of the problem and gives promising results. The numerical simulation is carried out by rewriting the multi-layer approach in a compact formulation, which corresponds to a system with non-conservative products, and using path-conservative numerical scheme. Numerical results are presented in order to show the potential of the model

    Effects of the second virial coefficient on the adiabatic lapse rate of dry atmospheres

    Full text link
    We study the effect of the second virial coefficient on the adiabatic lapse rate of a dry atmosphere. To this end, we compute the corresponding adiabatic curves, the internal energy, and the heat capacity, among other thermodynamic parameters. We apply these results to Earth, Mars, Venus, Titan, and the exoplanet G1 851d, considering three physically relevant virial coefficients in each case: the hard-sphere, van der Waals, and the square-well potential. These examples illustrate under which atmospheric conditions the effect of the second virial coefficient is relevant. Taking the latter into account yields corrections towards the experimental values of the lapse rates of Venus and Titan in some instances.Comment: 12 pages, 8 figures. Comments are welcom

    Lucky Spectroscopy, an equivalent technique to Lucky Imaging. Spatially resolved spectroscopy of massive close visual binaries using the William Herschel Telescope

    Get PDF
    CONTEXT: Many massive stars have nearby companions whose presence hamper their characterization through spectroscopy. AIMS: We want to obtain spatially resolved spectroscopy of close massive visual binaries to derive their spectral types. METHODS: We obtain a large number of short long-slit spectroscopic exposures of five close binaries under good seeing conditions, select those with the best characteristics, extract the spectra using multiple-profile fitting, and combine the results to derive spatially separated spectra. RESULTS: We demonstrate the usefulness of Lucky Spectroscopy by presenting the spatially resolved spectra of the components of each system, in two cases with separations of only ~0.3". Those are delta Ori Aa+Ab (resolved in the optical for the first time) and sigma Ori AaAb+B (first time ever resolved). We also spatially resolve 15 Mon AaAb+B, zeta Ori AaAb+B (both previously resolved with GOSSS, the Galactic O-Star Spectroscopic Survey), and eta Ori AaAb+B, a system with two spectroscopic B+B binaries and a fifth visual component. The systems have in common that they are composed of an inner pair of slow rotators orbited by one or more fast rotators, a characteristic that could have consequences for the theories of massive star formation.Comment: Accepted for publication in A&A, 7 page
    corecore