36 research outputs found

    Anopheles aquasalis transcriptome reveals autophagic responses to Plasmodium vivax midgut invasion

    Get PDF
    BACKGROUND: Elimination of malaria depends on mastering transmission and understanding the biological basis of Plasmodium infection in the vector. The first mosquito organ to interact with the parasite is the midgut and its transcriptomic characterization during infection can reveal effective antiplasmodial responses able to limit the survival of the parasite. The vector response to Plasmodium vivax is not fully characterized, and its specificities when compared with other malaria parasites can be of fundamental interest for specific control measures. METHODS: Experimental infections were performed using a membrane-feeding device. Three groups were used: P. vivax-blood-fed, blood-fed on inactivated gametocytes, and unfed mosquitoes. Twenty-four hours after feeding, the mosquitoes were dissected and the midgut collected for transcriptomic analysis using RNAseq. Nine cDNA libraries were generated and sequenced on an Illumina HiSeq2500. Readings were checked for quality control and analysed using the Trinity platform for de novo transcriptome assembly. Transcript quantification was performed and the transcriptome was functionally annotated. Differential expression gene analysis was carried out. The role of the identified mechanisms was further explored using functional approaches. RESULTS: Forty-nine genes were identified as being differentially expressed with P. vivax infection: 34 were upregulated and 15 were downregulated. Half of the P. vivax-related differentially expressed genes could be related to autophagy; therefore, the effect of the known inhibitor (wortmannin) and activator (spermidine) was tested on the infection outcome. Autophagic activation significantly reduced the intensity and prevalence of infection. This was associated with transcription alterations of the autophagy regulating genes Beclin, DRAM and Apg8. CONCLUSIONS: Our data indicate that P. vivax invasion of An. aquasalis midgut epithelium triggers an autophagic response and its activation reduces infection. This suggests a novel mechanism that mosquitoes can use to fight Plasmodium infection.publishersversionpublishe

    A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd<sub>2 </sub>[<it>S<sub>(-)</sub></it>C<sup>2</sup>, N-dmpa]<sub>2 </sub>(ÎĽ-dppe)Cl<sub>2</sub>} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies.</p> <p>Methods</p> <p>B16F10-Nex2 cells were treated <it>in vitro </it>with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated <it>in vitro </it>with C7a.</p> <p>Results</p> <p>Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages <it>in vitro</it>, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells.</p> <p>Conclusions</p> <p>The cyclopalladated C7a complex is an effective chemotherapeutic anticancer compound against primary and metastatic murine and human tumors, including cisplatin-resistant cells, inducing apoptotic cell death via the intrinsic pathway.</p

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore