79 research outputs found

    Measurement of Thermal Noise in Multilayer Coatings with Optimized Layer Thickness

    Get PDF
    A standard quarter-wavelength multilayer optical coating will produce the highest reflectivity for a given number of coating layers, but in general it will not yield the lowest thermal noise for a prescribed reflectivity. Coatings with the layer thicknesses optimized to minimize thermal noise could be useful in future generation interferometric gravitational wave detectors where coating thermal noise is expected to limit the sensitivity of the instrument. We present the results of direct measurements of the thermal noise of a standard quarter-wavelength coating and a low noise optimized coating. The measurements indicate a reduction in thermal noise in line with modeling predictions.Comment: 8 pages, 14 figure

    Material loss angles from direct measurements of broadband thermal noise

    Get PDF
    We estimate the loss angles of the materials currently used in the highly reflective test-mass coatings of interferometric detectors of gravitational waves, namely Silica, Tantala, and Ti-dop ed Tantala, from direct measurement of coating thermal noise in an optical interferometer testbench, the Caltech TNI. We also present a simple predictive theory for the material properties of amorphous glassy oxide mixtures, which gives results in good agreement with our measurements on Ti-doped Tantala. Alternative measure ment methods and results are reviewed, and some critical issues are discussed

    Practical and clinical utility of non-invasive vagus nerve stimulation (nVNS) for the acute treatment of migraine. A post hoc analysis of the randomized, sham-controlled, double-blind PRESTO trial

    Get PDF
    Background: The PRESTO study of non-invasive vagus nerve stimulation (nVNS; gammaCore®) featured key primary and secondary end points recommended by the International Headache Society to provide Class I evidence that for patients with an episodic migraine, nVNS significantly increases the probability of having mild pain or being pain-free 2 h post stimulation. Here, we examined additional data from PRESTO to provide further insights into the practical utility of nVNS by evaluating its ability to consistently deliver clinically meaningful improvements in pain intensity while reducing the need for rescue medication. Methods: Patients recorded pain intensity for treated migraine attacks on a 4-point scale. Data were examined to compare nVNS and sham with regard to the percentage of patients who benefited by at least 1 point in pain intensity. We also assessed the percentage of attacks that required rescue medication and pain-free rates stratified by pain intensity at treatment initiation. Results: A significantly higher percentage of patients who used acute nVNS treatment (n = 120) vs sham (n = 123) reported a ≥ 1-point decrease in pain intensity at 30 min (nVNS, 32.2%; sham, 18.5%; P = 0.020), 60 min (nVNS, 38.8%; sham, 24.0%; P = 0.017), and 120 min (nVNS, 46.8%; sham, 26.2%; P = 0.002) after the first attack. Similar significant results were seen when assessing the benefit in all attacks. The proportion of patients who did not require rescue medication was significantly higher with nVNS than with sham for the first attack (nVNS, 59.3%; sham, 41.9%; P = 0.013) and all attacks (nVNS, 52.3%; sham, 37.3%; P = 0.008). When initial pain intensity was mild, the percentage of patients with no pain after treatment was significantly higher with nVNS than with sham at 60 min (all attacks: nVNS, 37.0%; sham, 21.2%; P = 0.025) and 120 min (first attack: nVNS, 50.0%; sham, 25.0%; P = 0.018; all attacks: nVNS, 46.7%; sham, 30.1%; P = 0.037). Conclusions: This post hoc analysis demonstrated that acute nVNS treatment quickly and consistently reduced pain intensity while decreasing rescue medication use. These clinical benefits provide guidance in the optimal use of nVNS in everyday practice, which can potentially reduce use of acute pharmacologic medications and their associated adverse events. Trial registration: ClinicalTrials.gov identifier: NCT02686034

    The My Active and Healthy Aging (My-AHA) ICT platform to detect and prevent frailty in older adults: Randomized control trial design and protocol

    Get PDF
    [EN] Introduction Frailty increases the risk of poor health outcomes, disability, hospitalization, and death in older adults and affects 7%¿12% of the aging population. Secondary impacts of frailty on psychological health and socialization are significant negative contributors to poor outcomes for frail older adults. Method The My Active and Healthy Aging (My-AHA) consortium has developed an information and communications technology¿based platform to support active and healthy aging through early detection of prefrailty and provision of individually tailored interventions, targeting multidomain risks for frailty across physical activity, cognitive activity, diet and nutrition, sleep, and psychosocial activities. Six hundred adults aged 60 years and older will be recruited to participate in a multinational, multisite 18-month randomized controlled trial to test the efficacy of the My-AHA platform to detect prefrailty and the efficacy of individually tailored interventions to prevent development of clinical frailty in this cohort. A total of 10 centers from Italy, Germany, Austria, Spain, United Kingdom, Belgium, Sweden, Japan, South Korea, and Australia will participate in the randomized controlled trial. Results Pilot testing (Alpha Wave) of the My-AHA platform and all ancillary systems has been completed with a small group of older adults in Europe with the full randomized controlled trial scheduled to commence in 2018. Discussion The My-AHA study will expand the understanding of antecedent risk factors for clinical frailty so as to deliver targeted interventions to adults with prefrailty. Through the use of an information and communications technology platform that can connect with multiple devices within the older adult's own home, the My-AHA platform is designed to measure an individual's risk factors for frailty across multiple domains and then deliver personalized domain-specific interventions to the individual. The My-AHA platform is technology-agnostic, enabling the integration of new devices and sensor platforms as they emerge.This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 689582 and the Australian National Health and Medical Research Council (NHRMC) European Union grant scheme (1115818). M.J.S. reports personal fees from Eli Lilly (Australia) Pty Ltd and grants from Novotech Pty Ltd, outside the submitted work. All other authors report nothing to disclose.Summers, MJ.; Rainero, I.; Vercelli, AE.; Aumayr, GA.; De Rosario Martínez, H.; Mönter, M.; Kawashima, R. (2018). The My Active and Healthy Aging (My-AHA) ICT platform to detect and prevent frailty in older adults: Randomized control trial design and protocol. Alzheimer's and Dementia: Translational Research and Clinical Interventions. 4:252-262. https://doi.org/10.1016/j.trci.2018.06.004S2522624Blair, S. N. (1995). Changes in Physical Fitness and All-Cause Mortality. JAMA, 273(14), 1093. doi:10.1001/jama.1995.03520380029031Fried, L. P., Ferrucci, L., Darer, J., Williamson, J. D., & Anderson, G. (2004). Untangling the Concepts of Disability, Frailty, and Comorbidity: Implications for Improved Targeting and Care. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 59(3), M255-M263. doi:10.1093/gerona/59.3.m255Gillick, M. (2001). Guest Editorial: Pinning Down Frailty. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M134-M135. doi:10.1093/gerona/56.3.m134Hamerman, D. (1999). Toward an Understanding of Frailty. Annals of Internal Medicine, 130(11), 945. doi:10.7326/0003-4819-130-11-199906010-00022Fried, L. P., Tangen, C. M., Walston, J., Newman, A. B., Hirsch, C., Gottdiener, J., … McBurnie, M. A. (2001). Frailty in Older Adults: Evidence for a Phenotype. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56(3), M146-M157. doi:10.1093/gerona/56.3.m146Panza, F., Solfrizzi, V., Barulli, M. R., Santamato, A., Seripa, D., Pilotto, A., & Logroscino, G. (2015). Cognitive Frailty: A Systematic Review of Epidemiological and Neurobiological Evidence of an Age-Related Clinical Condition. Rejuvenation Research, 18(5), 389-412. doi:10.1089/rej.2014.1637Soong, J., Poots, A., Scott, S., Donald, K., Woodcock, T., Lovett, D., & Bell, D. (2015). Quantifying the prevalence of frailty in English hospitals. BMJ Open, 5(10), e008456. doi:10.1136/bmjopen-2015-008456Varadhan, R., Walston, J., Cappola, A. R., Carlson, M. C., Wand, G. S., & Fried, L. P. (2008). Higher Levels and Blunted Diurnal Variation of Cortisol in Frail Older Women. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(2), 190-195. doi:10.1093/gerona/63.2.190BROWN, I., RENWICK, R., & RAPHAEL, D. (1995). Frailty. International Journal of Rehabilitation Research, 18(2), 93-102. doi:10.1097/00004356-199506000-00001Buchner, D. M., & Wagner, E. H. (1992). Preventing Frail Health. Clinics in Geriatric Medicine, 8(1), 1-18. doi:10.1016/s0749-0690(18)30494-4Kojima, G., Iliffe, S., Jivraj, S., & Walters, K. (2016). Association between frailty and quality of life among community-dwelling older people: a systematic review and meta-analysis. Journal of Epidemiology and Community Health, 70(7), 716-721. doi:10.1136/jech-2015-206717Ory, M. G., Schechtman, K. B., Miller, J. P., Hadley, E. C., Fiatarone, M. A., … Province, M. A. (1993). Frailty and Injuries in Later Life: The FICSIT Trials. Journal of the American Geriatrics Society, 41(3), 283-296. doi:10.1111/j.1532-5415.1993.tb06707.xShamliyan, T., Talley, K. M. C., Ramakrishnan, R., & Kane, R. L. (2013). Association of frailty with survival: A systematic literature review. Ageing Research Reviews, 12(2), 719-736. doi:10.1016/j.arr.2012.03.001Woodhouse, K. W., & O’Mahony, M. S. (1997). Frailty and ageing. Age and Ageing, 26(4), 245-246. doi:10.1093/ageing/26.4.245CAMPBELL, A. J., & BUCHNER, D. M. (1997). Unstable disability and the fluctuations of frailty. Age and Ageing, 26(4), 315-318. doi:10.1093/ageing/26.4.315Drey, M., Pfeifer, K., Sieber, C. C., & Bauer, J. M. (2011). The Fried Frailty Criteria as Inclusion Criteria for a Randomized Controlled Trial: Personal Experience and Literature Review. Gerontology, 57(1), 11-18. doi:10.1159/000313433Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270-279. doi:10.1016/j.jalz.2011.03.008Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild Cognitive Impairment. Archives of Neurology, 56(3), 303. doi:10.1001/archneur.56.3.303Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., … Petersen, R. C. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240-246. doi:10.1111/j.1365-2796.2004.01380.xDubois, B., Hampel, H., Feldman, H. H., Scheltens, P., Aisen, P., … Andrieu, S. (2016). Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s & Dementia, 12(3), 292-323. doi:10.1016/j.jalz.2016.02.002Moher, D., Hopewell, S., Schulz, K. F., Montori, V., Gotzsche, P. C., Devereaux, P. J., … Altman, D. G. (2010). CONSORT 2010 Explanation and Elaboration: updated guidelines for reporting parallel group randomised trials. BMJ, 340(mar23 1), c869-c869. doi:10.1136/bmj.c869Gray, L. C., Bernabei, R., Berg, K., Finne-Soveri, H., Fries, B. E., Hirdes, J. P., … Ariño-Blasco, S. (2008). Standardizing Assessment of Elderly People in Acute Care: The interRAI Acute Care Instrument. Journal of the American Geriatrics Society, 56(3), 536-541. doi:10.1111/j.1532-5415.2007.01590.xRadloff, L. S. (1977). The CES-D Scale. Applied Psychological Measurement, 1(3), 385-401. doi:10.1177/014662167700100306Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., … Wallace, R. B. (1994). A Short Physical Performance Battery Assessing Lower Extremity Function: Association With Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. Journal of Gerontology, 49(2), M85-M94. doi:10.1093/geronj/49.2.m85Powell, L. E., & Myers, A. M. (1995). The Activities-specific Balance Confidence (ABC) Scale. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50A(1), M28-M34. doi:10.1093/gerona/50a.1.m28Kendzierski, D., & DeCarlo, K. J. (1991). Physical Activity Enjoyment Scale: Two Validation Studies. Journal of Sport and Exercise Psychology, 13(1), 50-64. doi:10.1123/jsep.13.1.50Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). «Mini-mental state». Journal of Psychiatric Research, 12(3), 189-198. doi:10.1016/0022-3956(75)90026-6Brandt, J. (1991). The hopkins verbal learning test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5(2), 125-142. doi:10.1080/13854049108403297Lubben, J. E. (1988). Assessing social networks among elderly populations. Family & Community Health, 11(3), 42-52. doi:10.1097/00003727-198811000-00008Russell, D., Peplau, L. A., & Cutrona, C. E. (1980). The revised UCLA Loneliness Scale: Concurrent and discriminant validity evidence. Journal of Personality and Social Psychology, 39(3), 472-480. doi:10.1037/0022-3514.39.3.472De Vries, O. J., Peeters, G. M. E. E., Lips, P., & Deeg, D. J. H. (2013). Does frailty predict increased risk of falls and fractures? A prospective population-based study. Osteoporosis International, 24(9), 2397-2403. doi:10.1007/s00198-013-2303-zTheou, O., Stathokostas, L., Roland, K. P., Jakobi, J. M., Patterson, C., Vandervoort, A. A., & Jones, G. R. (2011). The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review. Journal of Aging Research, 2011, 1-19. doi:10.4061/2011/569194Cadore, E. (2014). Strength and Endurance Training Prescription in Healthy and Frail Elderly. Aging and Disease, 5(3), 183. doi:10.14336/ad.2014.0500183Cadore, E. L., Rodríguez-Mañas, L., Sinclair, A., & Izquierdo, M. (2013). Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review. Rejuvenation Research, 16(2), 105-114. doi:10.1089/rej.2012.1397Gardner, M. M. (2001). Practical implementation of an exercise-based falls prevention programme. Age and Ageing, 30(1), 77-83. doi:10.1093/ageing/30.1.77Eng, J. J. (2010). Fitness and Mobility Exercise Program for Stroke. Topics in Geriatric Rehabilitation, 26(4), 310-323. doi:10.1097/tgr.0b013e3181fee736Wadlinger, H. A., & Isaacowitz, D. M. (2008). Looking happy: The experimental manipulation of a positive visual attention bias. Emotion, 8(1), 121-126. doi:10.1037/1528-3542.8.1.121MacLeod, C. (2012). Cognitive bias modification procedures in the management of mental disorders. Current Opinion in Psychiatry, 25(2), 114-120. doi:10.1097/yco.0b013e32834fda4aMensink, R. P., & Katan, M. B. (1989). Effect of a Diet Enriched with Monounsaturated or Polyunsaturated Fatty Acids on Levels of Low-Density and High-Density Lipoprotein Cholesterol in Healthy Women and Men. New England Journal of Medicine, 321(7), 436-441. doi:10.1056/nejm19890817321070

    Evidence for an association between migraine and the hypocretin receptor 1 gene

    Get PDF
    The aim of our study was to investigate whether genetic variants in the hypocretin receptor 1 (HCRTR1) gene could modify the occurrence and the clinical features of migraine. Using a case–control strategy we genotyped 384 migraine patients and 259 controls for three SNPs in the HCRTR1 gene. Genotypic and allelic frequencies of the rs2271933 non-synonymous polymorphism resulted different (χ2 = 9.872, p = 0.007; χ2 = 8.108, p = 0.004) between migraineurs and controls. The carriage of the A allele was associated with an increased migraine risk (OR 1.42, 95% CI 1.11–1.81). When we divided the migraine patients into different subgroups, the difference reached the level of statistical significance only in migraine without aura. The different genotypes had no significant effect on the examined clinical characteristics of the disease. In conclusion, our data supports the hypothesis that the HCRTR1 gene could represent a genetic susceptibility factor for migraine without aura and suggests that the hypocretin system may have a role in the pathophysiology of migraine

    Frontotemporal dementia and its subtypes: a genome-wide association study

    Get PDF
    SummaryBackground Frontotemporal dementia (FTD) is a complex disorder characterised by a broad range of clinical manifestations, differential pathological signatures, and genetic variability. Mutations in three genes—MAPT, GRN, and C9orf72—have been associated with FTD. We sought to identify novel genetic risk loci associated with the disorder. Methods We did a two-stage genome-wide association study on clinical FTD, analysing samples from 3526 patients with {FTD} and 9402 healthy controls. To reduce genetic heterogeneity, all participants were of European ancestry. In the discovery phase (samples from 2154 patients with {FTD} and 4308 controls), we did separate association analyses for each {FTD} subtype (behavioural variant FTD, semantic dementia, progressive non-fluent aphasia, and {FTD} overlapping with motor neuron disease FTD-MND), followed by a meta-analysis of the entire dataset. We carried forward replication of the novel suggestive loci in an independent sample series (samples from 1372 patients and 5094 controls) and then did joint phase and brain expression and methylation quantitative trait loci analyses for the associated (p<5 × 10−8) single-nucleotide polymorphisms. Findings We identified novel associations exceeding the genome-wide significance threshold (p<5 × 10−8). Combined (joint) analyses of discovery and replication phases showed genome-wide significant association at 6p21.3, \{HLA\} locus (immune system), for rs9268877 (p=1·05 × 10−8; odds ratio=1·204 95% \{CI\} 1·11–1·30), rs9268856 (p=5·51 × 10−9; 0·809 0·76–0·86) and rs1980493 (p value=1·57 × 10−8, 0·775 0·69–0·86) in the entire cohort. We also identified a potential novel locus at 11q14, encompassing RAB38/CTSC (the transcripts of which are related to lysosomal biology), for the behavioural \{FTD\} subtype for which joint analyses showed suggestive association for rs302668 (p=2·44 × 10−7; 0·814 0·71–0·92). Analysis of expression and methylation quantitative trait loci data suggested that these loci might affect expression and methylation in cis. Interpretation Our findings suggest that immune system processes (link to 6p21.3) and possibly lysosomal and autophagy pathways (link to 11q14) are potentially involved in FTD. Our findings need to be replicated to better define the association of the newly identified loci with disease and to shed light on the pathomechanisms contributing to FTD. Funding The National Institute of Neurological Disorders and Stroke and National Institute on Aging, the Wellcome/MRC Centre on Parkinson's disease, Alzheimer's Research UK, and Texas Tech University Health Sciences Center
    corecore