7 research outputs found

    A view of the European carbon flux landscape through the lens of the ICOS atmospheric observation network

    Get PDF
    The ICOS (Integrated Carbon Observation System) network of atmospheric measurement stations produces standardized data on greenhouse gas concentrations at 36 stations in 14 different European countries (November 2022). The network targets a strongly heterogeneous landscape and the placement of instruments on tall towers and mountains make for large influence regions (footprints). The combined footprints for all the individual stations create the &ldquo;lens&rdquo; through which the observing network sees the European flux landscape. In this study, we summarize this view using quantitative metrics of the fluxes seen by individual stations, and by the current and future ICOS network. Results are presented both from a country-level and pan-European perspective, using open-source tools that we make available through the ICOS Carbon Portal. We target anthropogenic emissions from various sectors (e.g., energy production, industrial emissions), as well as the land-cover types found over Europe (e.g., broadleaf forests, croplands) and their spatiotemporally varying fluxes. This recognizes different interests of different ICOS stakeholders. We specifically introduce &ldquo;monitoring potential maps&rdquo;, which quantify the sensitivity of the network with regards to specific properties of each pixel compared to the averages across all pixels, to see which regions have a relative underrepresentation of land-cover, or biospheric fluxes. This potential changes with the introduction of new stations, which we investigate for the planned ICOS expansion with 20 stations over the next few years. The monitoring potential concept is novel and a useful addition to traditional quantitative network design methods. We find that the ICOS network has limited sensitivity to anthropogenic fluxes, as was intended in the current design. Its representation of biospheric fluxes follows the fractional representation of land-cover and is generally well balanced, with exceptions for a country like Norway where the southerly station Birkenes predominantly senses coniferous forest fluxes instead of the more abundant northerly grass &amp; shrublands. Grass &amp; shrubland fluxes are relatively underrepresented in ICOS, with the largest monitoring potential in Scandinavia, Croatia, and Serbia. These easterly countries similarly show a relative underrepresentation of broadleaf forest fluxes, partly due to a lack of monitoring stations, and partly due to the abundant sensitivity to broadleaf forests in the most densely monitored countries such as France and Germany. We stress that this does not imply these latter countries to be fully monitored and of lesser interest for network expansion: for example, inclusion of Schauinsland in the future network expands the network lens to mostly unmonitored mixed- and broadleaf forests which are relatively underrepresented at the national level. Such considerations demonstrate the usefulness of our analyses and can readily be re-produced for any network configuration within Europe with tools offered through the Carbon Portal.</p

    Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease.

    Get PDF
    Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease

    Magnetic Resonance Imaging Evaluation of Bone Metastases Treated with Radiotherapy in Palliative Intent: A Multicenter Prospective Study on Clinical and Instrumental Evaluation Assessment Concordance (MARTE Study)

    No full text
    Metastasis to bone is a common occurrence among epithelial tumors, with a high incidence rate in the Western world. As a result, bone lesions are a significant burden on the healthcare system, with a high morbidity index. These injuries are often symptomatic and can lead to functional limitations, which in turn cause reduced mobility in patients. Additionally, they can lead to secondary complications such as pathological fractures, spinal cord compression, hypercalcemia, or bone marrow suppression. The treatment of bone metastases requires collaboration between multiple healthcare professionals, including oncologists, orthopedists, neurosurgeons, physiatrists, and radiotherapists. The primary objective of this study is to evaluate the correlation between two methods used to assess local control. Specifically, the study aims to determine if a reduction in the volume of bone lesions corresponds to better symptomatic control in the clinical management of patients, and vice versa. To achieve this objective, the study evaluates morphological criteria by comparing pre- and post-radiotherapy treatment imaging using MRI and RECIST 1.1 criteria. MRI without contrast is the preferred diagnostic imaging method, due to its excellent tolerance by patients, the absence of exposure to ionizing radiation, and the avoidance of paramagnetic contrast media side effects. This imaging modality allows for accurate assessment of bone lesions. One of the secondary objectives of this study is to identify potentially useful parameters that can distinguish patients into two classes: "good" and "poor" responders to treatment, as reported by previous studies in the literature. These parameters can be evaluated from the imaging examinations by analyzing morphological changes and radiomic features on different sequences, such as T1, STIR (short tau inversion recovery), and DWI-MRI (diffusion-weighted)

    Nasopharyngeal cancer: the impact of guidelines and teaching on radiation target volume delineation

    No full text
    Target volume delineation in the radiation treatment of nasopharyngeal cancer is challenging due to several reasons such as the complex anatomy of the site, the need for the elective coverage of definite anatomical regions, the curative intent of treatment and the rarity of the disease, especially in non-endemic areas. We aimed to analyze the impact of educational interactive teaching courses on target volume delineation accuracy between Italian radiation oncology centers. Only one contour dataset per center was admitted. The educational course consisted in three parts: (1) The completely anonymized image dataset of a T4N1 nasopharyngeal cancer patient was shared between centers before the course with the request of target volume and organs at risk delineation; (2) the course was held online with dedicated multidisciplinary sessions on nasopharyngeal anatomy, nasopharyngeal cancer pattern of diffusion and on the description and explanation of international contouring guidelines. At the end of the course, the participating centers were asked to resubmit the contours with appropriate corrections; (3) the pre- and post-course contours were analyzed and quantitatively and qualitatively compared with the benchmark contours delineated by the panel of experts. The analysis of the 19 pre- and post-contours submitted by the participating centers revealed a significant improvement in the Dice similarity index in all the clinical target volumes (CTV1, CTV2 and CTV3) passing from 0.67, 0.51 and 0.48 to 0.69, 0.65 and 0.52, respectively. The organs at risk delineation was also improved. The qualitative analysis consisted in the evaluation of the inclusion of the proper anatomical regions in the target volumes; it was conducted following internationally validated guidelines of contouring for nasopharyngeal radiation treatment. All the sites were properly included in target volume delineation by &gt;50% of the centers after correction. A significant improvement was registered for the skull base, the sphenoid sinus and the nodal levels. These results demonstrated the important role that educational courses with interactive sessions could have in such a challenging task as target volume delineation in modern radiation oncology

    Distinct HR expression patterns significantly affect the clinical behavior of metastatic HER2+ breast cancer and degree of benefit from novel anti-HER2 agents in the real world setting

    No full text
    We analyzed data from 738 HER2-positive metastatic breast cancer (mbc) patients treated with pertuzumab-based regimens and/or T-DM1 at 45 Italian centers. Outcomes were explored in relation to tumor subtype assessed by immunohistochemistry (IHC). The median progression-free survival at first-line (mPFS1) was 12 months. Pertuzumab as first-line conferred longer mPFS1 compared to other first-line treatments (16 vs. 9 months, p = 0.0001), regardless of IHC subtype. Median PFS in second-line (mPFS2) was 7 months, with no difference by IHC subtype, but it was more favorable with T-DM1 compared to other agents (7 vs. 6 months, p = 0.03). There was no PFS2 gain in patients with tumors expressing both hormonal receptors (HRs; p = 0.17), while a trend emerged for tumors with one HR (p = 0.05). Conversely, PFS2 gain was significant in HRs-negative tumors (p = 0.04). Median overall survival (mOS) was 74 months, with no significant differences by IHC subtypes. Survival rates at 2 and 3 years in patients treated with T-DM1 in second-line after pertuzumab were significantly lower compared to pertuzumab-naive patients (p = 0.01). When analyzed by IHC subtype, the outcome was confirmed if both HRs or no HRs were expressed (p = 0.02 and p = 0.006, respectively). Our results confirm that HRs expression impacts the clinical behavior and novel treatment-related outcomes of HER2-positive tumors when treatment sequences are considered. Moreover, multivariate analysis showed that HRs expression had no effect on PFS and OS. Further studies are warranted to confirm our findings and clarify the interplay between HER2 and estrogen receptor pathways in HER2-positive (mbc) patients
    corecore