58 research outputs found

    Fingerprinting ash deposits of small scale eruptions by their physical and textural features

    Get PDF
    Correlation of distal ash deposits with their proximal counterparts mainly relies on chemical and mineralogical characterization of bulk rock and matrix glasses. However, the study of juvenile fragments often reveals the heterogeneity in terms of clast shape, external surface, groundmass texture and composition. This is particularly evident in small-scale eruptions, characterized by a strong variability in texture and relative abundance of juvenile fragments. This heterogeneity introduces an inherent uncertainty, that makes the compositional data alone inadequate to unequivocally characterize the tephra bed. Pyroclast characteristics, if described and quantified, can represent an additional clue for the correct identification of the tephra. The paper presents morphological, textural and compositional data on the products of an ash eruption from Middle Age activity of Vesuvius, to demonstrate the information that can be extracted from the proposed type of analysis. Juvenile fragments from five ash layers throughout the studied products were randomly hand-picked, and fully characterized in terms of external morphology, particle outline parameterization, groundmass texture and glass composition. Statistical analysis of shape parameters characterized groups of fragments that can be compared with the other textural and physical parameters. The main result is that the data do not show important cross-correlations, so suggesting that all of these parameters, together with accurate field data are needed for the complete fingerprinting of a tephra bed. We suggest that this approach is especially important for characterizing the products of small scale, compositionally undistinguishable, eruptions and represents the necessary step to deal with before going into more detailed compositional analyses

    The 2nd to 4th century explosive activity of Vesuvius: new data on the timing of the upward migration of the post-A.D. 79 magma chamber

    Get PDF
    ber (SMM), the eruption cycle occurred at Vesuvius (Italy) in the period between the A.D. 79 plinian and the A.D. 472 subplinan eruptions. Historical accounts report only sporadic, poorly reliable descriptions of the volcanic activity in this period, during which a stratified sequence of ash and lapilli beds, up to 150 cm thick, with a total volume estimated around 0.15 km3, was widely dispersed on the outer slopes of the volcano. Stratigraphic studies and component analyses suggest that activity was characterized by mixed hydromagmatic and magmatic processes. The eruption style has been interpreted as repeated alternations of continuous and prolonged ash emission activity intercalated with short-lived, violent strombolian phases. Analyses of the bulk rock composition reveal that during the entire eruption cycle, magma maintained an homogeneous phonotephritic composition. In addition, the general trends of major and trace elements depicted by the products of the A.D. 79 and A.D. 472 eruptions converge to the SMM composition, suggesting a common mafic endmember for these eruptions. The volatile content measured in pyroxene-hosted melt inclusions indicates two main values of crystallization pressures, around 220 and 70 MPa, roughly corresponding to the previously estimated depth of the magma reservoirs of the A.D. 79 and A.D. 472 eruptions, respectively. The study of SMM eruption cycle may thus contribute to understand the processes governing the volcano reawakening immediately after a plinian event, and the timing and modalities which govern the migration of the magma reservoir

    PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE)

    Get PDF
    In the present work a preliminary performance study regarding a small hypersonic airplane named HyPlane is presented. It is designed for long duration sub-orbital space tourism missions, in the frame of the Space Renaissance (SR) Italia Space Tourism Program. The vehicle is also consistent with a point-to-point medium range hypersonic trip, within the “urgent business travel” market segment. The design of such a hypersonic airplane is based on the concept of integrating available technologies developed for aeronautical and space atmospheric re-entry systems. The vehicle, characterized by high aerodynamic efficiency and low wing loading, is able to provide aerodynamic stability and manoeuvrability along the flight path and to produce a reduced sonic boom during cruise and supersonic descent approach, ensuring a very limited environmental impact. HyPlane, powered by Turbine Based Combined Cycle (TBCC) engines plus a throtteable Rocket, is able to perform Horizontal Takeoff and Horizontal Landing (HTHL) on runways. Aerodynamic and propulsive performances for the different flight regimes encountered during the missions are studied. Aerodynamic heating effects are analyzed, in order to identify suitable structures and materials design to sustain the hypersonic flight conditions. Different flight paths are also investigated, including hypersonic cruise and sub-orbital parabolic trajectories, which provide Space tourists with the opportunity of long duration missions, offering short and repeated periods of low-gravity, in the high stratosphere where a large view of the Earth is ensured

    Identifying recycled ash in basaltic eruptions

    Get PDF
    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These ‘recycled’ clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions

    The onset of an eruption: selective assimilation of hydrothermal minerals during pre-eruptive magma ascent of the 2010 summit eruption of Eyjafjallajokull volcano, Iceland

    Get PDF
    The complex processes occurring in the initial phases of an eruption are often recorded in the products of its opening stage, which are usually characterized by small volume and limited dispersal, and thus generally poorly studied. The 2010 eruption of Eyjafjallajökull (Iceland) represents a unique opportunity for these investigations thanks to the good preservation of tephra deposits within the ice/snow pack. A detailed geochemical investiga- tion on the glassy groundmass of single ash clasts disclosed a population of fragments with unusual high 87Sr/86Sr (up to 0.70668) for Icelandic magmatism, and anomalous elemental composition with respect to most of the ju- venile material of the eruption. This suggests that during its rise, before intruding into the ice cover, magma at a dyke tip selectively assimilated hydrothermal minerals with seawater-related, high-Sr isotopic ratios (zeolites, silica phases, anhydrite) hosted in altered volcanic/epiclastic rocks. According to the observed precursory seismic- ity, only restricted to few hours before the onset of the eruption, this process could have accompanied subcritical aseismic fracture opening during the days before the eruption, possibly related to stress corrosion-cracking pro- cesses, which enhanced the partial dissolution/melting and subsequent selective assimilation of the host rocks

    RAPPORTO SULLE INDAGINI DI SISMICA A RIFLESSIONE, GRAVIMETRICHE, MAGNETOMETRICHE, MORFOBATIMETRICHE E CAMPIONAMENTO FONDO MARE NELL’ ARCO CALABRO (MAR IONIO) CAMPAGNA CALAMARE08

    Get PDF
    The study of the Calabrian Arc in the Ionian Sea is key to understanding of the geological processes in the Mediterranean Sea. We present the technical details and results of cruise CALAMARE08 with N/O Urania during spring 2008. We acquired a large set of geological and geophysical data, among them Multichannels Seismic and SBP, magnetometry, gravimetry, swath bathymetry and coring of sea bottom

    DISIECTA MEMBRA DI UNA STATUA BRONZEA DA OLBIA

    No full text
    The aim of this paper is the study of many bronze fragments, which were found in a wreck at Olbia, Sardinia. S. A. is author of pp.671-675, 678-68

    Fingerprinting ash deposits of small scale eruptions by their physical and textural features

    No full text
    Correlation of distal ash deposits with their proximal counterparts mainly relies on chemical and mineralogical characterization of bulk rock and matrix glasses. However, the study of juvenile fragments often reveals the heterogeneity in terms of clast shape, external surface, groundmass texture and composition. This is particularly evident in small scale eruptions, characterized by a strong variability in texture and relative abundance of juvenile fragments. This heterogeneity introduces an inherent uncertainty, that makes the compositional data alone inadequate to unequivocally characterize the tephra bed. Pyroclast characteristics, if described and quantified, can represent an additional clue for the correct identification of the tephra. The paper presents morphological, textural and compositional data on the products of an ash eruption from Middle Age activity of Vesuvius, to demonstrate the information that can be extracted from the proposed type of analysis. Juvenile fragments from five ash layers throughout the studied products were randomly hand-picked and fully characterized in terms of external morphology, particle outline parameterization, groundmass texture and glass composition. Statistical analysis of shape parameters characterized groups of fragments that can be compared with the other textural and physical parameters. The main result is that the data do not show important cross-correlation so suggesting that all of these parameters, together with accurate field data are needed for the complete fingerprinting of a tephra bed. We suggest that this approach is especially important for characterizing the products of small scale, compositionally undistinguishable, eruptions and represents the necessary step to deal with before going into more detailed compositional analyses.Published277-2873.5. Geologia e storia dei sistemi vulcaniciJCR Journalreserve

    Eruptive scenario of ash-dominated events at Vesuvius: the AP3 eruption (2,710±60 years B.P.)

    No full text
    The deposits of several eruptions dominated by ash emission have been recently described in the stratigraphic record of the last 4000 years of activity of Vesuvius. A peculiarity of this type of eruptions is the persistence of repeated phases dominated by abundant emission of ash and the sporadic occurrence of violent strombolian activity, they are recorded by very thick, massive to laminated, ash layers, interlayered with minor scoria-lapilli beds. These eruptions have a strong impact on the environment and on human and animal health, and their hazard implications assume an important role in the definition of the scenario for a short-term, mid-magnitude, expected event at Vesuvius, in particular when considering their long duration and the large dispersal of the products. These types of events are associated at Vesuvius both with processes of magma-water interaction, or with mechanisms dominated by pure magmatic fragmentation. We discuss here the results of a new morphological and textural study on the juvenile material of the 2700 years old, phreatomagmatic AP3 eruption (Andronico and Cioni 2002). The eruption was produced during discontinuous, explosive events of ash emission (pulsating activity) alternated with minor violent Strombolian activity. Fragments of gas-rich, crystal-poor, magma are ubiquitous, and their presence suggests that the primary fragmentation process was mainly driven by magmatic explosivity. The interaction of external water with magma (phreatomagmatic activity), certainly occurred during the AP3 eruption, acting to increase (but not to trigger) the explosive fragmentation of the magma, due to water vaporization. Textural data on juvenile clasts can be interpreted in terms of episodes of conduit filling, degassing and ash production, and give a time constraint on the total duration of the eruption. All these data provide a useful reference frame to depict the eruption scenario of this type of activity to be used for the definition of contingency plans.Published107-1223.5. Geologia e storia dei vulcani ed evoluzione dei magmi4.3. TTC - Scenari di pericolosità vulcanicaN/A or not JCRreserve
    corecore