
Fingerprinting ash deposits of small scale eruptions by their physical and textural features  

 

R. Cioni 1,2 , C. D’Oriano 1, A. Bertagnini 2  

 
1 Dip.to Scienze della Terra, Via Trentino 51, I-09127 Cagliari, Italy  
2 Ist. Nazionale di Geofisica e Vulcanologia, sez. di Pisa, Via Della Faggiola, 32 I-56126, Pisa, Italy  

 

Abstract 

 

Correlation of distal ash deposits with their proximal counterparts mainly relies on chemical and 

mineralogical characterization of bulk rock and matrix glasses. However, the study of juvenile 

fragments often reveals the heterogeneity in terms of clast shape, external surface, groundmass texture 

and composition. This is particularly evident in small-scale eruptions, characterized by a strong 

variability in texture and relative abundance of juvenile fragments. This heterogeneity introduces an 

inherent uncertainty, that makes the compositional data alone inadequate to unequivocally characterize 

the tephra bed. Pyroclast characteristics, if described and quantified, can represent an additional clue 

for the correct identification of the tephra.  

The paper presents morphological, textural and compositional data on the products of an ash eruption 

from Middle Age activity of Vesuvius, to demonstrate the information that can be extracted from the 

proposed type of analysis.  

Juvenile fragments from five ash layers throughout the studied products were randomly hand-picked, 

and fully characterized in terms of external morphology, particle outline parameterization, groundmass 

texture and glass composition. Statistical analysis of shape parameters characterized groups of 

fragments that can be compared with the other textural and physical parameters. The main result is that 

the data do not show important cross-correlations, so suggesting that all of these parameters, together 

with accurate field data are needed for the complete fingerprinting of a tephra bed. We suggest that this 

approach is especially important for characterizing the products of small scale, compositionally 

undistinguishable, eruptions and represents the necessary step to deal with before going into more 

detailed compositional analyses.  
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1. Introduction  

 

Ash deposits produced by explosive volcanic eruptions can be found thousands of kilometers from 

their source, and represent an important tool for understanding the frequency and the impact of 

volcanic activity on the environment. Ash deposits are also excellent chronological and stratigraphic 

markers and have been extensively used to reconstruct the volcanic history of a single volcano or, at a 

regional scale, to constrain complex stratigraphic sequences within a reliable chronological framework 

(Narcisi, 1995; Machida, 1999; Shane, 2000). Correlation of distal ash deposits with their proximal 

counterparts is sometimes problematic because of the lack of exhaustive data on the characteristic 

features of the their juvenile and lithic components. Chemical and mineralogical characterization of 

bulk rock and matrix glasses are presently the most used methods in tephra studies. The compositional 

data are commonly associated with a lithological description of the different components of the tephra 

bed (xenolithic material, loose juvenile crystals) and of the grain size (Orsi et al., 1992; Donoghue and 

Neall, 1996; Narcisi, 1996; De Rosa, 1999: Shane et al., 2002; Turney et al., 2004; Wulf et al., 2004; 

Wastergard, 2005).    

The products of mid-to low-intensity eruptions (sub-Plinian, violent strombolian, vulcanian, ash-

dominated eruptions) can show variability of the juvenile material (Nakada and Motomura, 1999; 

Hammer et al., 2000; Cioni et al., 2003). This variability is well expressed in the deposits of some 

eruptions of Vesuvius, where different types of juvenile fragments can occur at different stratigraphic 

levels within a same eruption (Fig. 1 a, b, c), or can coexist within the same stratigraphic level (Fig. 1).  

In tephra beds characterized by juvenile fragments heterogeneous in terms of external morphology, 

mineral and glass composition, and groundmass texture, (crystal type, size and content, and clast 

vesicularity), the compositional data routinely used to describe the juvenile components may be 

inadequate to unequivocally characterize the tephra bed. Similar problems are associated with the 

description of ash deposits with juvenile and xenolithic fractions with similar composition, or of those 

products where the presence of a largely crystallized groundmass reduces the possibility of performing 

reliable glass analyses. In recent years, the quantitative determination of groundmass textures (Rosi et 

al., 2004; D’Oriano et al., 2005) has been widely used for investigating the eruptive dynamics of an 

event (Dellino and La Volpe, 1996; Carey et al., 2000; Cashman and Blundy, 2000; Maria and Carey, 

2002). However, this approach also proved very effective for identifying the juvenile fragments of an 

ash deposit (Taddeucci et al., 2004; Wright et al., 2004), so adding another observational character able 



to give a more complete description of a tephra bed. Bearing this in mind, we suggest that in order to 

obtain an unequivocal fingerprint of the juvenile material proper of a tephra bed, textural and 

morphological characterization of the juvenile clasts should join the compositional analysis. In this 

paper we present morphological, textural and compositional data on the products of an ash eruption 

from Middle Age activity of Vesuvius, as an example used to highlight the large mess of information 

we can extract from the proposed type of analysis. The selected deposit is considered representative of 

mid-intensity eruptions able to generate and inject large amounts of ash in the atmosphere, resulting in 

long-range ash dispersal. To illustrate the potential of the method we use data from proximal deposits 

where the primary variability of the juvenile component is still well represented and not modified by 

transport and depositional processes. The deposits of several eruptions of this type, largely 

homogeneous and repetitive in terms of composition, can be present as individual beds or as 

cryptotephra(here intended as a tephra horizon invisible to the naked eye) in the distal sedimentary 

records, and a complete characterization can be resolutive for their recognition and correlation. We 

suggest that this approach is especially important for characterizing the products of small scale, 

compositionally undistinguishable, eruptions and represents the necessary step to deal with before 

going into more detailed compositional analyses.  

The term tephra bed is here used as synonym of ash fall deposit, even if the collective term “tephra” is 

used in the volcanological literature to indicate any product deriving from pyroclastic fragmentation of 

magma (Bates and Jackson, 1987). 

 

2. The AS1a Eruption of Vesuvius  

 

The Italian case is a good training-ground to test the different techniques for the study and correlation 

of tephra beds. The Quaternary volcanoes of central and southern Italy are characterized by a wide 

spectrum of magma compositions, ranging from alkali-potassic, to alkali-sodic, to calcalkaline 

(Peccerillo, 2005). The products of the volcanic activity from the different centers are often 

interlayered in the stratigraphic successions of continental and marine settings of the Mediterranean 

region. In particular, for the Campanian area, the present knowledge of the stratigraphic successions of 

Phlegrean Fields and Somma-Vesuvius is very detailed (Orsi et al., 1996; Di Vito et al., 1999; 

Santacroce et al., 2003; Cioni et al., 2007), and the products of many past eruptions are now very well 

characterized on a compositional and petrographical basis (Pappalardo et al., 1999; Di Vito et al., 2007; 

Santacroce et al., 2007). The products of the largest eruptions can be easily detected in the distal 



sedimentary successions, as they have a compositional fingerprint well described by numerous authors 

(see Santacroce et al., 2007, for an exhaustive review). These large-scale eruptions, however, are often 

separated by time intervals of several thousands or hundreds of years, during which the volcanic 

activity is characterized by low intensity eruptions. In order to obtain a more detailed scanning of the 

temporal sequence, we need to study also the minor tephra beds or the cryptotephra often present in the 

distal “archives” (Narcisi, 1996; Calanchi et al., 1998; Siani et al., 2004; Wulf et al., 2004). These 

products are generally related to eruptions of lower intensity than those responsible for the major tephra 

beds. These low to mid intensity eruptions have been very frequent at Vesuvius during the last 3500 

years (Andronico and Cioni, 2002; Cioni et al., 2007); the related products do not have the peculiar, in 

some cases unique, magma compositions of the large eruptions (Andronico and Cioni, 2002; Cioni et 

al. 2007) and present heterogeneous juvenile fractions. For this reason, these deposits can represent an 

interesting test case in order to verify the application of quantitative textural and morphological studies 

to the tephra characterization. Several ash deposits related to long-lasting ash emission activity are 

present in the Middle Age products of Vesuvius (Andronico et al., 1995; Cioni et al., 2007). In 

particular we focus here on the deposits of an event, named AS1a according to Cioni et al. (2007), 

occurred shortly after the 512 AD sub plinian eruption. The deposit consists in a succession of five 

main beds with a total thickness of about 40 cm at a distance of 7 km East from the vent (Fig. 2). In the 

reference section the deposit overlies an erosive surface at the top of the 512 AD eruption and is 

represented by fine and coarse ash layers with minor fine lapilli beds. Five samples were collected at 

different stratigraphic heights (Fig. 2). The deposit is dispersed in the eastern sector of the volcano and 

it is clearly identifiable up to a distance of 10-12 km from the vent. Cryptotephra of similar age are 

present in a core drilled inside the Monticchio Lake, Mt Vulture, 100 km East of Vesuvius (Wulf, 

2000).  

 

3. Methods  

 

The methods commonly used in volcanology to describe pyroclastic fragments have been widely 

discussed in many papers since the pioneering studies of Walker and Croasdale (1971) and Heiken 

(1974). Recently Turney et al. (2004) reconsidered the methods for describing pyroclastic fragments 

for the drawing up of a general protocol to apply in tephrochronological studies. In this paper, the 

description and characterization of the fragments of the selected eruption was obtained using a 

selection and in some cases an improvement of the currently universally used methods, trying to put 



together classical methods derived from tephrochronology with some of the recently developed 

techniques of textural characterization of the fragments.  

 

3.1. Sample preparation  

 

The studied samples were prepared in order to collect a complete set of morphological, textural, and 

compositional data on each single ash fragment. About 30 juvenile fragments (from the 0.5-1 mm size 

interval) were randomly hand-picked under the stereomicroscope from each sample. The choice of this 

grain-size represents a compromise between sample representativeness and suitability of performing 

reliable analytical work on the single grains. For their identification, the selected clasts were mounted 

on double-adhesive tape on a glass slide. External morphology of the clasts was then described and the 

clasts photographed both using a digital camera at the stereomicroscope and at the Scanning Electron 

Microscope (SEM). The glass slide was then embedded in epoxy resin and polished until a surface 

approximately containing the maximum diameter of the fragments was exposed. These mounts were 

used for SEM inspection, back-scattered electrons (BSE) imaging of the textural features and for 

analytical purposes of the individual clasts.  

 

3.2. Composition  

 

Major elements in minerals and glass were determined by energy dispersive X-ray analysis using 

EDAX DX4 on a Philips XL30 SEM at the Dipartimento di Scienze della Terra of Pisa, at an 

accelerating voltage of 20 kV, beam current of 0.1 nA and working distance of 10 mm. In order to 

reduce Na losses, matrix glass was analyzed in raster mode, using windows in the range from 5x5 µm, 

in highly crystalline samples, to 10x10 µm. The analytical error measured on mineral and glass 

standards is always lower than 5-10 wt%, increasing at low concentrations. In order to check for 

microscopic inhomegeneities of the matrix glass, 2 to 3 raster windows were analyzed in 5 to 10 clasts 

for each sample, and the results on each clast averaged. Care was used in avoiding areas close less than 

a few microns to groundmass crystals.  

 

3.3. Clast morphology  

 



Classical observations of clast morphology at the SEM comprised description of particle shape, 

vesicularity, external surface texture, and eventual occurrence of surface alteration or secondary 

minerals (Heiken and Wohletz, 1985; Heiken and Wohletz, 1991). Quantitative parameters of ash grain 

morphology were obtained by processing SEM low magnification images (80x to 100x) on each grain. 

Four non-dimensional shape parameters were measured on each clast: rectangularity, compactness, 

elongation and circularity (Fig. 3; Dellino and La Volpe, 1996; Riley et al., 2003). The projection of 

the particle outline on the horizontal plane was used as a proxy for the particle shape. This outline was 

then filled and converted into a binary image, and the morphological parameters of interest were 

measured using the ImageJ software (http://rsb.info.nih.gov/ij)(Fig.3).  

 

3.4. Statistical analysis  

 

The shape parameters were statistically processed using the method of Principal Component Analysis 

(PCA; Davis, 2003), in order to create classes with similar features. The goal of PCA is to reduce the 

number of variables into a set of orthogonal maximum linear combinations of the same variables (the 

new principal components), in order to highlight their similarities and differences. Cluster analysis was 

then applied to the extracted Principal Components in order to create groups of objects, or clusters, 

with similar features. By hierarchical clustering it is possible to create cluster trees, in which 

normalized Euclidean distance (root mean-square distance) is used as a measure of similarity between 

particles. Results are shown in a dendrogram, that consists of many U-shaped lines connecting objects, 

where the height of each U depends inversely on the degree of similarity between two connected 

objects.  

 

3.5. Textural investigations  

 

Two backscattered (BSE) images were captured for each clast at magnification of 250x and resolution 

of 2048x1600 pixel. Quantitative measures of the groundmass features include vesicle shape, total 

vesicularity, and crystal content. Vesicle shape and content were obtained by manual reconstruction of 

the bubble contour, and incipient bubble coalescence was graphically deconvoluted. The circularity and 

the elongation of the vesicles (defined as in Fig. 3) were calculated using ImageJ software. For 

automated analysis of groundmass vesicularity, binary images were used to estimate the percent area of 

vesicles. The same procedure was applied for the quantification of the groundmass crystal content. 



Data were recalculated on a vesicle free basis. This automated method possibly shifts toward highest 

values the upper range of groundmass crystal content, due to the occasional presence in some of the 

analyzed clasts of phenocrysts which contribute to increase the area occupied by the crystals.  

 

4. Results  

 

In the studied products, the juvenile ash fragments show a large variability in terms of external 

morphology; vesicle content, size, and shape; and groundmass texture and composition. 

Macroscopically, ash fragments appear to vary between two end members: from light-brown, highly to 

moderately vesicular, crystal-poor pumice, to black, poorly vesicular, crystal-rich scoria. In some 

fragments black scoria is included in light-colored pumice. The different types of juvenile fragments 

are present in the deposits with proportions which vary with the stratigraphic height. All the data 

obtained for each studied fragment are reported in Table 1; representative glass composition of the 

studied fragments is reported in Table 2. 

 

4.1. External morphology  

 

The shapes of juvenile clasts are shown in Fig. 4, mainly based on classical descriptive morphological 

features of the juvenile fragments (Heiken and Wohletz, 1985). At least three different types of clasts 

are recognized:  

-Spongy clasts. They consist of vesicular fragments with nearly spherical bubbles of similar size 

intersecting the external surfaces of the clast (Fig.4 a). Clasts vary from highly vesicular with large 

coalescent bubbles and thin walls to moderately vesicular with less marked coalescence and thicker 

walls.  

-Fused clasts. The fragments are irregularly shaped and show smooth glassy surfaces (Fig.4 b). 

Vesicles vary from sub-spherical to elongated, they are heterogeneously distributed within the clast and 

generally not exposed on the external surface. A particular type is represented by drop like clasts with 

fused surfaces and fluidal forms (“achneliths” according to Walker and Croasdale, 1971; or “droplets” 

according to Heiken, 1971).  

-Blocky clasts. Their overall shape is determined by planar or curviplanar, glassy to microcrystalline 

surfaces (Heiken and Wohletz, 1985) intersecting few vesicles (Fig.4 c). They have a nearly isometric 

form (equant to sub-equant grains). Vesicle shape is largely variable, from irregularly shaped to sub-



spherical. Clasts vary from moderately to poorly vesicular. These three types of fragments are present 

in all the analyzed samples, with variable proportions.  

Blocky clasts are the most abundant fragments; they represent the 62 vol % of the sample 3, while in 

the other samples their abundance vary from 30 to 45 vol %. Spongy clasts are generally restricted to 

10 vol % of the total, except in the sample 1 where they reach the 40vol %. The larger variability is 

shown by fused clasts, that represent the majority (52 vol %) of sample 4.  

 

4.2. Particle outline  

 

Particle outline of each clast is described by the shape parameters listed in Table 1. The cluster analysis 

was performed using the first two principal components obtained by the multivariate analysis on the 

different parameter of each clast. These two principal components account for the 97.2% of the total 

variance. Cluster analysis of the measured shape parameters helps in individuating at least three groups 

of clasts which include all the particles. Figure 5 shows the external shapes representative of the three 

recognized groups and the percentage of each group in the different samples. These three groups can be 

described in terms of the classical grain shape parameters used in sedimentary petrology. According to 

this terminology, each group can be identified in terms of sphericity and roundness of the clasts (Blatt 

et al., 1980).  

The first group consists of equidimensional (High Sphericity) clasts with uneven outline (Very 

Angular) (HS-VA). This is the most abundant type, forming the 53 vol % of the analyzed fragments. It 

always represents the majority of the juvenile fragments also in the single samples, ranging between 40 

and 60 vol % in all the analyzed samples. 

The second group (HS-SR) contains equidimensional (High Sphericity) particles with smooth outline 

(Sub-Rounded), and represents the 16 vol % of the total. It reaches the maximum value (30 vol %) in 

sample 1, decreasing until the 9 vol % at the top of the succession.  

Particles of the third group (LS-VA) are elongated (Low Sphericity)fragments with uneven outline 

(Very Angular), and represent the 31 vol % of the total fragments, showing a quite constant abundance 

(26-38 vol %) along the succession.  

 

4.3. Compositional features  

 



The juvenile component has a phonolitic tephrite bulk composition. Groundmass glass is a foidite, with 

a lower SiO2 content and a larger range of alkali than bulk rock. Juvenile material is porphyritic with 

leucite, clinopyroxene and phlogopite, while the groundmass consists of microphenocrysts and 

microlites of leucite, and microlites of pyroxene and plagioclase. These compositional features are very 

common in the products of violent strombolian and ash emission activity of Vesuvius(Santacroce et al., 

1993; Marianelli et al., 1999; Andronico and Cioni, 2002; Santacroce et al., 2007). The concentration 

of the oxides of the major elements in groundmass glass is fully comparable with the compositional 

range shown by the 472 AD (Santacroce et al., 2007), and partially overlaps the composition of 512 

AD (Fig.6), being not completely distinguishable from them on a pure compositional basis(Table 2). 

  

4.4. Groundmass texture  

 

Groundmass textures are described in terms of vesicle and crystal content, and vesicle size. Three 

different groups of fragments are generally recognized in all the samples, having different relative 

abundances.  

-Moderately Vesicular, Glassy clasts (MVG). Clasts are characterized by a vesicularity index 

(Houghton and Wilson, 1989) ranging between 35 and 50 vol %. Vesicle mean diameter ranges 

between 40 and 90 µm at the base of the stratigraphic succession, regularly decreasing toward the top 

(between 20 and 45 µm). Bubbles are irregularly shaped; in some clasts flattening of bubbles results in 

a pseudofluidal structure. Cumulative size population density of all the measured vesicles has a bell-

shaped distribution skewed toward the largest values(Fig. 7 a). Small, rounded vesicles are also 

present, recorded by the fine tail of the vesicle distribution. The crystal content is largely variable, 

ranging between 33 and 80 vol %, with the most frequent values around 55-75 vol %. MVG clasts are 

the most abundant type of fragments, representing the 44 vol % of the whole dataset, ranging between 

30 vol % in the layer L2 (Fig. 2) to 70 vol % in the layer L4. Glass composition is homogeneous both 

at the scale of a single fragment and between the different fragments of this type (Fig. 7 a). 

-Poorly Vesicular, Glassy clasts (PVG). They are characterized by a vesicularity index ranging between 

15-30 vol % (Fig.7 b). The mean diameter of the vesicles ranges between 35 and 75 µm at the base of 

the succession, decreasing to 20-35 µm at the top. Bubbles are nearly spherical, and do not evidence 

coalescence. In some fragments collapsed bubbles are present. The generally smaller dimension of 

bubbles with respect to MVG clasts results in a size population density distribution more symmetrical 

and peaked at a smaller size (Fig. 7 b). Crystal content has a similar range than MVG (55-85 vol %). 



This is possibly related to the similar crystal content of the two types of fragments. PVG clasts 

represent the 35 vol % of the total fragments; they are the most abundant type of fragments at the base 

of the succession (L1, Fig. 2), regularly decreasing from 54 vol % to 20 vol % at top of the succession 

(L4, Fig. 2). Glass composition is homogeneous, being very similar to that of the MVG clasts. 

-Dense, Crystal-Rich clasts (DCR). They are characterized by a crystal content > 90 vol % and 

vesicularity lower than 30 vol % (Fig.7 c). The vesicle diameter ranges between 20 and 65 µm, 

increasing toward the top of the succession. Bubbles are irregularly shaped, reflecting crystal growth 

on the bubble walls. Round vesicles smaller than 5 µm diameter are present in nearly holocrystalline 

fragments, suggesting a final vesiculation possibly induced by extreme crystal nucleation and growth. 

Population density of bubbles lacks the very pronounced modes of MVG and PVG clasts, showing a 

platykurtic distribution and a dimensional range of the vesicles similar to the other two clast types. 

DCR clasts are the less abundant type of fragments (20 vol % of the total). They are the most abundant 

type in layer L2 (42 vol%), while poorly represented in the other layers (from 3 to 10 vol%). Glass 

composition is largely variable between the different samples, and some oxides show different 

concentrations with respect to MVG and PVG clasts (Fig. 7c). 

 

4.5. Relationships between the different parameters  

 

The discussed morphological and textural features represent a dataset which exhaustively describes the 

juvenile fraction of each studied sample. While the relative abundance of the different classes described 

above for each observed feature (external morphology, particle outline, groundmass composition and 

texture) is dependent on the grain size selected for the study, these classes well represent the variability 

of the juvenile material from few millimeters to a hundred microns (fine lapilli to fine ash, according to 

the grain size terminology introduced by White and Houghton, 2006). Cross-correlation between the 

different measured parameters is shown in Fig. 8 for two of the studied samples. Within a same sample, 

we observe no clear mutual relationships between the different parameters. The main result is that a 

one-to-one correlation between the parameters does not exist so that, while for example all the DCR 

clasts of sample EP2 have blocky morphology (Fig.8 g), the blocky clasts of the same sample are 

characterized by variable groundmass texture (Fig. 8 a). Apparently, the commonly used classification 

based on external morphology of the clasts (Heiken, 1974) is not suited to differentiate clasts with 

similar characteristics of the groundmass texture (Fig. 8 a, b). In the presented study, for example, 

while spongy and fused clasts of sample EP2 mainly belong to MVG category, the same fragments of 



sample EP4 practically cover the whole spectrum of groundmass textures (Fig. 8 a, b). Surprisingly, the 

classes of particle outline do not show a correlation with the morphological features of the external 

surface of the clast (Fig. 8e, f). Similarly, particle outline of the clasts is completely uncorrelated with 

groundmass texture (Fig. 8 c, d). This suggests that the classes of particle outline as derived from the 

proposed method of cluster analysis represent an additional good descriptor for juvenile particles of the 

tephra, being completely independent from all the other measured parameters. A clear correlation exists 

between the three categories of groundmass texture and composition of the residual glass, as clearly 

shown in Figure 7. This correlation should be taken in account when trying to describe the whole 

compositional spectrum typical of a given tephra bed. A quick, low cost estimation of the relative 

proportions of the different compositional classes of clasts could be done by observation of thin section 

or back scattered electron images of a set of randomly chosen juvenile fragments.  

 

5. Concluding Remarks  

 

The methods generally adopted for tephrostratigraphic correlations mainly rely on the comparison 

(sometimes poorly representative on a statistical basis) of the composition of a distal tephra bed with 

the existing dataset of selected possible sources. The comparison is often made between data collected 

with different analytical methods, making the correlation sometimes very problematic. In addition, the 

compositional data on glassy fragments commonly available in the volcanological literature are rarely 

associated to descriptive data on textural and morphological features of the fragments. This can reveal 

an important pitfall when using the data for correlation purposes, especially because the detailed study 

of randomly selected juvenile fragments also from single beds of a pyroclastic deposit often testify to a 

very large variability in terms of clast shape, external surface, groundmass texture and composition. 

While this variability is generally present in all types of eruptions, the relative abundance of the 

different categories of clasts within a single bed widely varies. Large-scale, Plinian-type eruptions are 

generally dominated by only few, poorly variable, pumice types. Conversely, small-scale, sub-plinian 

to violent strombolian to ash-dominated eruptions often lack a largely predominant type of juvenile 

material in terms of physical and compositional features, and all the different types of fragments are 

unevenly distributed along the succession of the deposits. In addition,the relative proportions of the 

different types of juvenile material can be strongly affected by transport and deposition (eolian 

fractionation; Fisher and Schmincke, 1984). Despite this, textural and compositional variability of the 

juvenile material can be still preserved, even if in proportions variable with distance, in the distal 



counterparts of such deposits. The presence of different types of juvenile fragments in a tephra bed 

introduces an inherent uncertainty when correlations are only based on glass composition of not clearly 

identified juvenile fragments. Conversely, this variability represents an additional feature to be used for 

a more in-depth characterization of the tephra bed and, if opportunely described and quantified, can 

represent a decisive clue for the correct identification and correlation of the tephra bed. The proposed 

methodology of physical and compositional fingerprinting of ash deposits includes a set of parameters 

that can be used as a collective, unequivocal descriptor of the juvenile material. An important result of 

the analysis on the AS1a deposit is that the measured parameters (external morphology, particle 

outline, groundmass texture, glass composition) do not show remarkable cross-correlations, so being 

all useful to a complete description of juvenile material. This also suggests that provenance studies on 

heterogeneous ash deposits need a combination of analytical and field data to constrain the origin of the 

products.  

A conclusive message to be delivered to the volcanological community is that, when studying the 

deposits of an explosive eruption, volcanologists should bear in mind that their data will be possibly 

used in tephrostratigraphic studies as the main source for tracing correlations between proximal and 

distal tephra beds. From this point of view the proposed methodology, as it provides a more accurate 

picture of the whole spectrum of fragments, reveals very useful not only for deriving information about 

the dynamics of magma ascent, fragmentation, transport and deposition, but also for tephrostratigraphic 

purposes.  
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Figure captions 

 



Fig.1: Comparison between ash grains from selected eruptions of Vesuvius. For each eruption 

representative juvenile particles with different textural features are shown. Backscattered (BSE) 

images: A) ash from the air-fall deposit of the 472 AD Pollena eruption. B) ash from the final surge 

deposits of the 472 AD Pollena eruption. C) ash from the air-fall deposit of 512 AD eruption); D) ash 

from the air-fall deposit of AS1a eruption.  

 

Fig.2: Stratigraphic section of the Middle Age AS1a deposits at Terzigno, 7 km East of Vesuvius. The 

deposit, consisting of 4 main beds (from L1 to L4) lies on the erosive surface at the top of the 512 AD 

sequence and is covered by the deposit of AS1b. The stratigraphic position of the analysed samples is 

also  indicated (EP8 to EP2). 

 

Fig.3: Secondary electrons SEM image processed and made binary for measuring the external shape 

parameters (rectangularity, compactness, elongation and circularity). Dimensional features and shape 

parameters are defined.  

 

Fig.4: Secondary electrons SEM images showing the external morphologies of the ash particles. For 

each group, the two pictures represent the end-member in terms of vesicle shape and content. a) 

Spongy clasts ; b) fused clasts; c) blocky clasts.  

 

Fig.5: The three groups of particle outlines as derived from the cluster analysis. Numbers refer to the 

relative abundance of the different groups in the investigated samples. The name of each group is 

defined by combining terms describing sphericity and angularity of the particles. 1) High Spherical and 

Very Angular fragments (HS-VA); 2) High Spherical and Sub-Rounded fragments (HS-SR); 3) Low 

Spherical and Very Angular fragments (LS-VA).  

 

Fig.6: Box plots of major element contents in groundmass glass of 472 AD, 512 AD and AS1a 

eruptions. Each box encloses 50% of the data (the median value of the variable is displayed as a line). 

The lines extending from each box mark the minimum and maximum values of the data set that fall 

within an accepted range. Outliers are displayed as individual points.  

 

Fig.7: Summary of the measured physical and compositional parameters for a) the moderately vesicular 

glassy clasts (MVG), b) poorly vesicular glassy clasts (PVG) and c) dense crystal-rich clasts (DCR). 



From the top of the figure: external morphology, internal texture, groundmass texture, crystal content 

vs vesicle content (the box represents the range of variability for the corresponding type); cumulative 

vesicle size population density; major oxides composition.  

 

Fig.8: Cross-correlations between the different measured parameters for samples EP2 and EP4. a and 

b) external morphology vs. internal texture; c and d) shape parameters vs. internal texture; e and f) 

shape parameters vs. external morphology; g and h) internal texture vs. external morphology.  

 

Table 1: Measured parameters (mean and standard deviation) of each analysed particle. Rectangularity, 

Compactness, Elongation, Circularity, Vesicularity (%), crystal content (%), particle outline, external 

morphology, groundmass texture. 

 

Table 2: Average groundmass glass composition of the three groups of fragments with different 

internal texture. The number of analyses for each group (in brackets) and the standard deviation (σ) are 

reported.  
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wt% mean (n=13) σ mean (n=6) σ mean (n=13) σ
SiO2 47.63 0.32 47.95 0.34 47.72 0.94
TiO2 0.95 0.07 0.96 0.05 0.94 0.19
Al2O3 20.10 0.26 20.21 0.13 20.31 0.58
FeO 8.44 0.28 8.34 0.15 9.05 1.24
MnO 0.24 0.06 0.28 0.08 0.32 0.07
MgO 1.35 0.09 1.24 0.16 1.02 0.28
CaO 7.92 0.35 7.75 0.46 6.26 1.44
Na2O 6.59 0.29 6.98 0.51 7.93 1.30
K2O 5.47 0.44 4.99 0.47 5.14 0.68
P2O5 0.14 0.05 0.11 0.06 0.04 0.08

Cl 1.16 0.04 1.19 0.06 1.27 0.12
sum 100 100 100

MVG PVG DCR




