259 research outputs found
Relationship of body condition score and blood urea and ammonia to pregnancy in Italian Mediterranean buffaloes
The relationship of body condition score ( BCS) and blood urea and ammonia to pregnancy outcome was examined in Italian Mediterranean Buffalo cows mated by AI. The study was conducted on 150 buffaloes at 145 +/- 83 days in milk that were fed a diet comprising 14.8% crude protein, 0.9 milk forage units . kg(-1) dry matter and a non- structural carbohydrate/ crude protein ratio of 2.14. The stage of the oestrous cycle was synchronised by the Ovsynch- TAI programme and blood urea and ammonia levels were assessed on the day of AI. Energy corrected milk ( ECM) production and BCS were recorded bi- weekly. The pregnancy risk was 46.7% and was slightly lower in buffaloes with BCS 7.5. There were no significant differences in ECM, urea and ammonia between pregnant and non- pregnant buffaloes. However, pregnancy outcome was higher ( P = 0.02) in buffaloes with blood urea < 6.83 mmol . L-1. The likelihood of pregnancy for buffaloes with low urea blood level was 2.6 greater than for high urea level and exposure to a high urea level lowered the probability of pregnancy by about 0.25. The findings indicate that buffaloes are similar to cattle and increased blood levels of urea are associated with reduced fertility when animals are mated by AI
Active immunisation of mice with GnRH lipopeptide vaccine candidates: importance of T helper or multi-dimer GnRH epitope
Active immunisation against gonadotropin releasing hormone (GnRH) is a potential alternative to surgical castration. This study focused on the development of a GnRH subunit lipopeptide vaccine. A library of vaccine candidates that contained one or more (up to eight) copies of monomeric or dimeric GnRH peptide antigen, an adjuvanting lipidic moiety based on lipoamino acids, and an additional T helper epitope, was synthesised by solid phase peptide synthesis. The candidates were evaluated in vivo in order to determine the minimal components of this vaccine necessary to induce a systemic immune response. BALB/c mice were immunised with GnRH lipopeptide conjugates, co-administered with or without Complete Freund's Adjuvant, followed by two additional immunisations. Significant GnRH-specific IgG titres were detected in sera obtained from mice immunised with four of the seven lipopeptides tested, with an increase in titres observed after successive immunisations. This study highlights the importance of for epitope optimisation and delivery system design when producing anti-hapten antibodies in vivo. The results of this study also contribute to the development of future clinical and veterinary immunocontraceptives
Effetti del ritiro e della temperatura sul comportamento di pannelli in vetrocemento
LAUREA MAGISTRALEIl mattone di vetro trova collocazione nel mondo delle costruzioni grazie alle proprietà intrinseche di trasparenza e modularità. Tuttavia viene in genere utilizzato in associazione con altri materiali quindi è opportuno indagare a fondo gli elementi peculiari che governano il comportamento di tale materiale in configurazioni particolarmente critiche.
La leggerezza e la trasparenza, infatti, sono solo gli aspetti positivi di un materiale affascinante come il vetro, che d’altro canto ha un comportamento fragile per eccellenza e una forte dipendenza dalla presenza di difetti.
Lo scopo di questa tesi è indagare tutti i possibili fattori che possano causare la rottura dei mattoni di vetro di un’opera in vetrocemento, al fine di ottenere delle prescrizioni valide come riferimento per eventuali progetti futuri.
In particolare ci si sofferma inizialmente sullo stato dell’arte e, nello specifico, si dà ampio spazio ad una ricerca dei possibili effetti negativi dovuti al ritiro del calcestruzzo, al carico termico e alle condizioni di vincolo. Si tratta inoltre dettagliatamente il materiale vetro, dalla composizione chimica ai meccanismi che ne regolano la resistenza sulla base del modello della Meccanica della Frattura Elastica Lineare.
Le prescrizioni progettuali vengono proposte sulla base dei risultati ottenuti tramite accurate analisi agli elementi finiti, effettuate su un caso di studio reale che ha mostrato problemi di danneggiamento degli elementi in vetro.
Le analisi vengono condotte su pannelli prefabbricati in vetrocemento in una configurazione particolarmente critica (custom curtain wall panel system ad elementi fissati iperstaticamente ad una sottostruttura metallica), a seguito di una dettagliata elaborazione dei dati in cui vengono presentati:
- Un modello analitico in campo elastico lineare del ritiro del calcestruzzo, al fine di prevedere l’evoluzione del fenomeno fessurativo e gli effetti a lungo termine.
- Un’ulteriore analisi agli elementi finiti sugli aspetti termomeccanici, al fine di valutare l’andamento delle isoterme all’interno del pannello responsabili della non linearità del carico termico.
- Un’indagine delle condizioni di vincolo durante tutte le fasi di produzione (dal getto in officina alla posa in opera in cantiere) al fine di determinare con precisione le condizioni al contorno da implementare.
- Un calcolo della resistenza del vetro sulla base di una classe di verifica di livello I agli stati limite.
Le analisi FEM presentate sono sia lineari che non-lineari e sono state condotte valutando, dapprima separatamente e successivamente in maniera congiunta, l’influenza dello spessore dei travetti e gli effetti dovuti alla legge di ritiro del calcestruzzo (simulando l’utilizzo di additivi antiritiro), studiandone l’evoluzione nelle diverse fasi operative.
I risultati ottenuti possono risultare di notevole interesse applicativo e forniscono dei riferimenti progettuali per un corretto utilizzo del vetro mattone in diverse possibili configurazioni
Anti-apoptotic seminal vesicle protein IV inhibits cell-mediated immunity.
The in vitro effect of seminal vesicle protein IV (SV-IV) on the cytotoxic activity of human natural or acquired cellular immunity has been investigated by standard immunological procedures, a 51Cr-release cytotoxicity assay, and labeled-ligand binding experiments.
The data obtained demonstrate that: (1) fluoresceinated or [125I]-labeled SV-IV binds specifically to the surface of human purified non-adherent monuclear cells (NA-MNC); (2)SV-IV suppresses the cytotoxicity of natural killer (NK) cells against K562 target cells, that of IL-2-stimulated NK (LAK) cells against DAUDI target cells, and that of VEL antigen-sensitized cytotoxic T lymphocytes (CTLs) against VEL target cells; (3) treatment of K562 target cells alone with SV-IV decreases their susceptibility to NK-induced lysis. These findings indicate that the protein SV-IV has a marked in vitro inhibitory effect on NK, LAK and CTL cytotoxicity, providing a better understanding of its immune regulatory functions
Ambiente e sviluppo in un comune di piccole dimensioni. Proposta del documento di piano per il comune di Fornovo San Giovanni
LAUREA SPECIALISTIC
Peripheral action of kisspeptin at reproductive tissues-role in ovarian function and embryo implantation and relevance to assisted reproductive technology in livestock: A review
Kisspeptin (KISS1) is encoded by the KISS1 gene and was initially found to be a repressor of metastasis. Natural mutations in the KISS1 receptor gene (KISS1R) were subsequently shown to be associated with idiopathic hypothalamic hypogonadism and impaired puberty. This led to interest in the role of KISS1 in reproduction. It was established that KISS1 had a fundamental role in the control of gonadotropin releasing hormone (GnRH) secretion. KISS1 neurons have receptors for leptin and estrogen receptor α (ERα), which places KISS1 at the gateway of metabolic (leptin) and gonadal (ERα) regulation of GnRH secretion. More recently, KISS1 has been shown to act at peripheral reproductive tissues. KISS1 and KISS1R genes are expressed in follicles (granulosa, theca, oocyte), trophoblast, and uterus. KISS1 and KISS1R proteins are found in the same tissues. KISS1 appears to have autocrine and paracrine actions in follicle and oocyte maturation, trophoblast development, and implantation and placentation. In some studies, KISS1 was beneficial to in vitro oocyte maturation and blastocyst development. The next phase of KISS1 research will explore potential benefits on embryo survival and pregnancy. This will likely involve longer-term KISS1 treatments during proestrus, early embryo development, trophoblast attachment, and implantation and pregnancy. A deeper understanding of the direct action of KISS1 at reproductive tissues could help to achieve the next step change in embryo survival and improvement in the efficiency of assisted reproductive technology
Metabolic health, the metabolome and reproduction in female cattle: a review
Studies over the past 30 years have confirmed the important role of metabolic hormones and metabolic substrates in reproductive function in female cattle. The emergence of metabolomics is providing a deeper understanding of the role of specific metabolites, and clusters of metabolites, in reproduction and also health and disease. Dairy cows undergo major fluctuations in metabolic health and metabolomics is helping to better understand the changes in metabolite profiles associated with negative energy balance and ketosis. New knowledge that emerges from this work should lead to improved nutritional management of dairy cows. In reproduction, it is now possible to gain a metabolomic signature of ovarian follicular fluid and of developing embryos. This should likewise lead to improvements in both natural and assisted reproduction in cattle. Systems biology integrates genomics, transcriptomics, proteomics and metabolomics, and contributes to gaining an understanding of complex biological networks.Highlights Metabolic hormones and metabolic substrates have a major influence on reproduction in female cattle. Negative energy balance and ketosis are associated with changes in the systemic and liver metabolome in dairy cows. The metabolome of ovarian follicular fluid influences oocyte quality and embryo development. Systems biology integrates genomics, transcriptomics, proteomics and metabolomics, and provides a deeper understanding of complex biological networks
Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation—role in establishing a pregnancy in cattle: A review
Cell–cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm–oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm–oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell–cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle
Review: Development, adoption, and impact of assisted reproduction in domestic buffaloes
: The domestic buffalo (Bubalus bubalis), also known as water buffalo, comprises two sub-species the River buffalo (B. bubalis ssp. bubalis; 50 chromosomes) and the Swamp buffalo (ssp. carabanensis; 48 chromosomes). Domestic buffaloes are a globally significant livestock species. In South Asia, the River buffalo is a primary source of milk and meat and has a very important role in food security. The River buffalo also supports high-value, differentiated food production in Europe and the Americas. The Swamp buffalo is an important draft animal and a source of food in Southeast Asia and East Asia. The growing importance of buffaloes requires that they undergo an accelerated rate of genetic gain for efficiency of production, product quality, and sustainability. This will involve the increased use of assisted reproduction. The initial application of reproductive technology in buffaloes had variable success as it relied on the adoption of procedures developed for cattle. This included artificial insemination (AI), sperm cryopreservation, and embryo technologies such as cloning and in vitro embryo production (IVEP). Reproductive technology has been progressively refined in buffaloes, and today, the success of AI and IVEP is comparable to cattle. Ovarian follicular superstimulation (superovulation) combined with in vivo embryo production results in low embryo recovery in buffaloes and has limited practical application. The contribution of elite female buffaloes to future genetic improvement will therefore rely mainly on oocyte pickup and IVEP. This will include IVEP from females before puberty to reduce generation intervals. This review provides for the first time a clear chronology on the development, adoption, and impact, of assisted reproduction in domestic buffaloes
Strategies to reduce embryonic mortality in buffalo cows
The aim of the present study was to examine whether treatment with a GnRH agonist, hCG or P4 on Day 25 after AI increased P4 concentrations and reduced the incidence of embryonic mortality (EM) in pregnant buffaloes mated in mid-winter in a Mediterranean environment. The trial was carried out in two farms characterized, in previous years, by low (LEM Group), 153 buffaloes (DIM=150±7 days), and high (HEM Group), 284 buffaloes (DIM=163±5 days), incidence of embryo mortality. Animals were synchronized by Ovsynch-TAI Program and artificially inseminated. On day 25, pregnant buffaloes were randomly assigned to four groups: Control (no treatment), GnRH agonist (buserelin acetate, 12.6 μg), hCG (1500 IU) and P4 (341 mg of P4 i.m. every 4 days for three times). Progesterone (pg/ml) was determined in milk whey on Days 10, 20 and 25 after AI in all buffaloes and in Days 30 and 45 only in buffaloes pregnant on day 25 and assigned to four groups of treatment. Pregnancy diagnosis was undertaken on Day 45 by ultrasound. All treatments increased P4 milk whey and reduced embryonic mortality in buffalo cows bred in the farm characterized by high EM
- …
