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Abstract

Cell–cell adhesion molecules have critically important roles in the early events of

reproduction including gamete transport, sperm–oocyte interaction, embryonic

development, and implantation. Major adhesion molecules involved in reproduction

include cadherins, integrins, and disintegrin and metalloprotease domain‐containing
(ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte

in the initial stages of sperm–oocyte interaction and fusion. Cadherins act in early

embryos to organize the inner cell mass and trophectoderm. The trophoblast and

uterine endometrial epithelium variously express cadherins, integrins, trophinin, and

selectin, which achieve apposition and attachment between the elongating conceptus

and uterine epithelium before implantation. An overview of the major cell–cell

adhesion molecules is presented and this is followed by examples of how adhesion

molecules help shape early reproductive events. The argument is made that a deeper

understanding of adhesion molecules and reproduction will inform new strategies

that improve embryo survival and increase the efficiency of natural mating and

assisted breeding in cattle.
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1 | INTRODUCTION

Cell–cell adhesion molecules have important roles in the organization

of tissues and organs during development and in the maintenance of

cellular and tissue integrity throughout life (Gallin, 1998; Taneyhill,

2008). Changes to normal cell–cell adhesion often lead to alterations

in cellular and tissue functions. This can include uncontrolled cellular

growth and metastasis (Adorno‐Cruz & Liu, 2019). Indeed, much of

what is known about adhesion molecules and cellular function has

come from studies in cancer biology (Buchanan et al., 2017; Edwards,

Handsley, & Pennington, 2008; Najy, Day, & Day, 2008; Shiomi,

Lemaitre, D’Armiento, & Okada, 2010; Sousa, Pereira, & Paredes,

2019; Zadka, Kulus, & Piatek, 2018).

Adhesion molecules are critically involved in the early events of

reproduction (Evans, 1999; Klentzeris, 1997; H. Wang & Dey, 2006).

This includes gamete transport, fertilization, embryonic development,

and implantation. The main families of adhesion molecules associated

with reproduction are integrins, cadherins, and disintegrin and

metalloprotease domain‐containing (ADAM) proteins (Evans, 1999).

Some adhesion molecules appear to act at specific stages of early

reproduction (e.g., ADAMs), while others are involved from gamete

transport through to implantation (e.g., integrins). Certain adhesion

molecules seem to have a particularly important function in early

reproduction in one species. An example is trophinin, which appears

to have a clear role in implantation in humans, although it has been

reported in other species (Fukuda & Sugihara, 2008).
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In cattle, the failure of a conceptus to attach to the uterine

epithelium (implantation) and establish a pregnancy is the major

source of reproductive loss (D’Occhio, Campanile, & Baruselli, 2019;

Sponchiado et al., 2019). Both the trophoblast epithelium and uterine

endometrial epithelium express adhesion molecules (Kokkinos,

Murthi, Wafai, Thompson, & Newgreen, 2010). These behave in a

manner similar to “velcro” and achieve initial apposition between the

trophoblast and uterus. It is hypothesized that improper expression

of adhesion molecules by the trophoblast, uterus, or both is the

underlying cause for a high proportion of early pregnancy failures in

cattle.

This review first provides a general background on different

families of adhesion molecules. The review then considers the role of

specific adhesion molecules in gamete transport, fertilization,

embryonic development, and implantation. The argument is made

that a deeper understanding of the role of adhesion molecules in

early reproductive events will inform new strategies to increase the

efficiency of both natural mating and assisted breeding. There is

particular mention of adhesion molecules in cattle for two primary

reasons. First, the failure of embryos to survive, implant, and

establish a pregnancy is the major cause of reproductive failure in

cattle. Second, cattle have major economic and social importance in

global food systems (D’Occhio et al., 2019). Hence, increasing

pregnancy outcome in cattle with natural mating and/or by the use

of assisted reproductive technology has both biological and social

significance.

The field of adhesion molecules is vast and a goal of this review is

to equip readers with a good working knowledge of the main

adhesion molecules that are linked with early reproductive events.

We hope this will encourage research that could lead to the next step

change in the proportion of embryos that produce a pregnancy. A

second goal is to illustrate how cellular processes in reproduction can

share the same basic mechanisms as analogous cellular processes

associated with diverse physiological functions. It is important that

reproductive biologists are aware that fundamental cellular and

molecular mechanisms can be common across different biological

pathways. The review includes many seminal articles that are highly

cited. It is trusted that this comprehensive resource provides a

valuable point of reference on adhesion molecules and their role in

early reproductive events.

2 | FAMILIES OF ADHESION MOLECULES

2.1 | Disintegrin and metalloprotease domain‐
containing proteins

The family of ADAM proteins has over 35 members which function as

cell adhesion molecules and/or proteases (Black & White, 1998;

Rocks et al., 2008; Seals & Courtneidge, 2003; J. M. White, 2003).

ADAMs are involved in cell–cell and cell–extracellular interactions

associated with angiogenesis, platelet aggregation, cell migration,

muscle development, tumor growth, immunity, and other cellular

processes (Bax et al., 2004; Dreymueller, Theodorou, Donners, &

Ludwig, 2017; Edwards et al., 2008; Lambrecht, Vanderkerken, &

Hammad, 2018; Rocks et al., 2008; Seals & Courtneidge, 2003; Zadka

et al., 2018). ADAMs are transmembrane glycoproteins and occur as

functional heterodimers (α and β subunits) in many tissues and across

different species (Bronson, Fusi, Calzi, Doldi, & Ferrari, 1999;

Edwards et al., 2008). They have a multidomain structure that is

highly conserved (Edwards et al., 2008; Seals & Courtneidge, 2003;

Figure 1).

One of the ADAM domains has homology with disintegrins

(Figure 1). The latter are proteins identified in snake venom that

F IGURE 1 Diagrammatic representation of the disintegrin and
metalloprotease domain‐containing (ADAM) proteins family of cell–cell
adhesion molecules. The ADAMs family of transmembrane proteins

belong to the zinc protease superfamily; specifically, the metzincin
subgroup and further subgroup the adamalysins. The multidomain
structure of ADAMs includes a prodomain (adjacent to NH2 terminus),

metalloprotease domain, disintegrin domain, cysteine‐rich domain,
EGF‐like domain, transmembrane domain, and a cytoplasmic tail. The
metalloprotease domain (adamalysins) is involved in extracellular
matrix degradation and remodeling, while the disintegrin domain is

involved in integrin receptor binding which facilitates cell–cell adhesion.
The metalloprotease domain and disintegrin domain give ADAMs their
name (a disintegrin and metalloprotease). The cysteine‐rich domain was

shown in Xenopus laevis to regulate ADAM protease function
(Smith et al., 2002) and it may also participate in adhesion. EGF‐like
domains are a common feature of adhesion molecules and proposed

roles include ligand recognition and adhesion (Kansas et al., 1994). The
specific role(s) of the EGF‐like domain in ADAMs has yet to be clearly
elucidated. The transmembrane domain anchors ADAMs to the cell.

The conserved cytoplasmic tail has binding sites for intracellular signal
transduction proteins and is involved in intracellular signaling
(Stone, Kroeger, & Sang, 1999). EGF, epidermal growth factor
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interact with integrins, a second family of adhesion molecules

discussed below. The disintegrin domain of ADAMs, therefore, has

adhesion properties and is involved in cell–cell and cell–extracellular

matrix interactions (Eto et al., 2002; Tomczuk et al., 2003; Zhu,

Bansal, & Evans, 2000). Disintegrins in snake venom have a RGD

(Arg‐Gly‐Asp) integrin‐binding sequence (Blobel, 1997). Human

ADAM15 has a RGD motif and, in other mammals, the binding of

ADAMs to integrins can involve different amino acid motifs

(Eto et al., 2002; Takahashi, Bigler, Ito, & White, 2001; Wong, Zhu,

Prater, Oh, & Evans, 2001; Yuan, Primakoff, & Myles, 1997). In mice,

these include QDE (Gln‐Asp‐Glu; Zhu et al., 2000) and DECD

(Asp‐Glu‐Cys‐Asp; Chen & Sampson, 1999). An analogous functional

motif in the guinea pig is TDE (Thr‐Asp‐Glu; Myles, Kimmel, Blobel,

White, & Primakoff, 1994). Extracellular matrix proteins bound by

ADAMs include collagen, fibronectin, gelatin, and laminin (Martin,

Eynstone, Davies, Williams & Steadman, 2002; Seals & Courtneidge,

2003; J. M. White, 2003).

ADAMs that have been associated with reproduction include

ADAM1 (fertilin α; initially named PH‐30), ADAM2 (fertilin β), and

ADAM3 (cyritestin; Blobel et al., 1992; Edwards et al., 2008; Evans,

1999; Frayne & Hall, 1999; Myles et al., 1994; Myles, Primakoff, &

Bellve, 1981). Functional fertilin is a heterodimer comprised of

fertilin α and fertilin β (Evans, 1999, 2001; Wong et al., 2001). It is

found on the surface of sperm and the disintegrin domain, which is

located on fertilin β, enables sperm to interact with integrins on the

oolemma of oocytes (Bronson et al., 1999). ADAMs on the surface of

sperm appear to also be involved in sperm transport and this is

discussed below.

2.2 | Integrins

Integrins are transmembrane heterodimers comprised of α‐ and

β‐subunits (Bachmann et al., 2019; Humphries, Byron, & Humphries,

2006; Humphries, Travis, Clark, & Mould, 2004; Hynes, 1992;

Figure 2). A total of 18 α‐subunits and 8 β‐subunits have been

identified which form 24 α–β integrin combinations (Barezyk et al.,

2010; Campbell & Humphries, 2011; Shimaoka, Takagi, & Springer,

2002). Two main functions of integrins are involvement in cell–cell

adhesion and the attachment of cells to extracellular matrix proteins

including laminin, collagen, vitronectin, and fibronectin (Barczyk,

Carracedo, & Gullberg, 2010; Seguin, Desgrosellier, Weis, & Cheresh,

2015; Shimaoka et al., 2002). The short cytoplasmic tail of integrins is

linked to the actin cytoskeleton through talin (Bouaouina, Harburger,

& Calderwood, 2011; Iwamoto & Calderwood, 2015; Figure 2).

This allows signaling between the cytoskeleton and the extra-

cellular matrix (Bouaouina et al., 2011; Das, Ithychanda, Qin, & Plow,

2014; Hynes, 1992; Iwamoto & Calderwood, 2015). Changes in the

interaction of integrins with the extracellular matrix can lead to

abnormal cell migration and tissue invasion in some cancers

(Desgrosellier & Cheresh, 2010; Hamidi & Ivaska, 2018; Seguin

et al., 2015). This has made integrins a potential target for anticancer

therapies (Desgrosellier & Cheresh, 2010; Seguin et al., 2015). The

integrin‐associated cell‐surface protein tetraspanin CD9 is important

for the action of integrins (Reyes, Cardenes, Machado‐Pineda, &

Cabanas, 2018; Termini & Gillette, 2017; Zhu & Evans, 2002; Ziyyat

et al., 2006; Figure 2).

F IGURE 2 Diagrammatic representation of the integrin family of

cell–cell adhesion molecules. Integrins are heterodimers that comprise
noncovalently associated α‐subunit (red) and β‐subunit (blue; Campbell
& Humphries, 2011; Pan, Zhao, Yuan, & Qin, 2016; Takada, Ye, & Simon,
2007). They have an extracellular domain, a transmembrane domain,

and cytoplasmic domain. The α‐subunit domains include a β‐propeller, a
thigh, and two calf domains. Some integrins have an I‐domain inserted
in the β‐propeller. The α‐subunit also has homologous repeating units

which have Ca2+ and Mg2+ binding sites important for ligand binding
(Yamnuik & Vogel, 2005; Zhang & Chen, 2012). The α‐subunit
transmembrane domain is relatively short and is involved in integrin

affinity through α‐ and β‐subunit interactions. The α‐subunit
cytoplasmic domain is also relatively short and interacts with talin,
which in turn links to F‐actin filaments of the cytoskeleton. This

facilitates signaling between the cytoskeleton and extracellular matrix.
The extracellular components of the β‐subunit comprise a βA‐domain
(inserted into the hybrid domain) that is homologous to the α‐subunit
I‐domain and is crucial for ligand binding, a hybrid domain (potentially

involved in affinity regulation), a cysteine‐rich PSI (plexin, semaphoring,
integrin) domain (involved in activation and ligand binding), four
epidermal growth factor (EGF) repeats (potentially involved in

propagating conformational signals from the membrane/cytosol to the
ligand‐binding headpiece), a β‐tail domain adjacent to the cell
membrane (involved in activation; Anthis & Campbell, 2011), and a

cytoplasmic domain that interacts with talin that links to F‐actin
filaments of the cytoskeleton, which influences integrin activation
(Calderwood et al., 1999). The function of integrins is fundamentally
dependent on integrin‐associated cell‐surface protein tetraspanin CD9

(Reyes et al., 2018). PSI, plexin, semaphoring, integrin
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In reproduction, the expression of integrins in mammals has been

demonstrated for sperm (Barraud‐Lange et al., 2007), unfertilized

oocytes (Fenichel & Durand‐Clement, 1998; Takahashi et al., 2000),

the trophoblast (Bowen, Bazer, & Burghardt, 1996), and uterus

(Bowen et al., 1996; Lessey, 1998; Sueoka et al., 1997; Yoshimura,

1997). Integrins are, therefore, involved from fertilization through to

implantation (Bowen & Hunt, 2000; Fleming, Sheth, & Fesenko, 2001;

Reddy & Mangale, 2003; Sueoka et al., 1997).

2.3 | Cadherins

Cadherins are a superfamily of more than 100 Ca2+‐dependent
cell–cell adhesion molecules (Angst, Marcozzi, & Magee, 2001; Gul,

Hulpiau, Saeys, & van Roy, 2017; Kemler, Ozawa, & Ringwald,

1989; Koch, Bozic, Pertz, & Engel, 1999; Nollet, Kools, & van Roy,

2000; Yagi & Takeichi, 2000). These transmembrane glycoproteins

(Figure 3) have many important roles in cell–cell contact and cell

signaling during tissue morphogenesis and also in the maintenance

of tissue homeostasis (Gallin, 1998; Gumbiner, 1996; Leckband &

Sivasankar, 2012; Maitre & Heisenberg, 2013; Mohamet, Hawkins,

& Ward, 2011; Niessen, Leckband, & Yap, 2011; Takeichi, 1995,

1988; Tiwari et al. 2018). Three classical cadherin groups that are

named for their tissue distribution and function include epithelial

cadherin (E‐cadherin), neural cadherin (N‐cadherin), and placental

cadherin (P‐cadherin; Moore, Radice, Dominis, & Kemler, 1999).

N‐cadherin, for example, has an important role in organizing cell

adhesion and movement during the formation of the neural crest in

embryogenesis (Derycke & Bracke, 2004; Taneyhill, 2008).

The extracellular region of cadherins consists of five domains that

are involved in Ca2+‐dependent homophilic (identical molecules

apposed on neighboring cells) and heterophilic (other molecules

such as integrins on neighboring cells) interactions during cell

adhesion and cell sorting (Halbleib & Nelson, 2006; Oda & Takeichi,

2011; van Roy & Bers, 2008; Figure 3).

The intracellular tail, which is most highly conserved, binds

with catenins (α‐ and β‐catenins) which, in turn, interact with the

actin cytoskeleton (Gooding, Yap, & Ikura, 2004; Gul et al., 2017;

Kemler et al., 1989; Ranscht, 1994; Takeichi, 2014; Yap, Brieher, &

Gumbiner, 1997; Figure 3). This creates molecular links whereby

the intracellular region of cadherins can influence the activity of

the extracellular region (Nagafuchi & Takeichi, 1988; Kintner,

1992). Intracellular α‐catenin is essential for cadherin function as

cells that express cadherin but lack α‐catenin do not show cell–cell

adhesion and cell signaling properties (Termini & Gillette, 2017).

Similar to other families of adhesion molecules (ADAMs, integrins),

altered function of cadherins can be associated with tumor growth

and metastasis (Sousa et al., 2019). With regard to early

reproductive events, cadherins have been assigned roles during

fertilization, embryogenesis, and implantation (Bloor, Metcalfe,

Rutherford, Brison, & Kimbler, 2002; Derycke & Bracke, 2004;

Ranscht, 1994; Vazquez‐Levin, Marín‐Briggiler, Caballero, &

Veiga, 2015).

3 | ADHESION MOLECULES AND
REPRODUCTION

The majority of studies on adhesion molecules and reproduction have

been carried out in laboratory animals (mouse, rat) and humans. It can

be concluded from these studies that adhesion molecules have

fundamental roles in early reproductive events that lead to attach-

ment of the trophoblast to the uterus, the initiation of implantation,

and the establishment of a pregnancy. As noted above, many of the

articles cited below are from studies in laboratory animals and humans

and, as a precautionary note, information on the roles of specific

adhesion molecules may not necessarily apply across all species. For

example, early embryonic development and placentation vary within

and between monogastric and ruminant animals. The trophinins would

appear to be particularly important adhesion molecules in

trophoblast–uterine endometrial epithelium attachment in humans.

F IGURE 3 Diagrammatic representation of the E‐cadherin family
of cell–cell adhesion molecules. The extracellular domains of

E‐cadherin are involved in cell–cell adhesion and in “classical”
cadherins comprise five domains often classified as EC1–EC5 from
the N‐terminus (Leckband & Prakasam, 2006). Cadherins are only

stable in the presence of Ca2+ which rigidifies the five domains and is
also involved in homotrophic adhesion between cadherins on
neighboring cells (Boggon et al., 2002; Nagar, Overduin, Ikura, & Rini,

1996). The intracellular domain of E‐cadherins interacts with
catenins which act as intermediaries and link to F‐actin filaments of
the cytoskeleton (Gul et al., 2017; Stepniak, Radice, & Vasioukhin,

2009). The link through to the cytoskeleton is important for cell–cell
adhesion (Nagafuchi, Ishihara, & Tsukita, 1994; Nagafuchi & Takeichi,
1988)
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3.1 | Gamete transport

The role of adhesion molecules in gamete transport is not as

extensively researched as the roles in fertilization, embryonic

development, and implantation. For sperm, their movement

through the epididymides and migration to the oviducts after

mating involves interaction with the extracellular matrix. This

interaction is thought to be facilitated by adhesion molecules found

on the surface of sperm (Blobel, 2000; Cho, 2012; Xiong, Wang, &

Shen, 2019). Mouse sperm lacking ADAM3 (Yamaguchi et al., 2009)

and E‐ and N‐cadherin (Vazquez‐Levin et al., 2015) showed

impaired mobility and did not migrate to the oviducts. The adhesion

molecule trophinin was shown to be associated with sperm motility

in humans (Hatakeyama et al., 2008) and mice (Park et al., 2012).

Once sperm arrive at the oviducts, adhesion molecules facilitate

the attachment of sperm to the oviductal epithelium (Aviles,

Gutierrez‐Adan, & Coy, 2010; Frolikova et al., 2016, 2019; Talevi &

Gualtieri, 2010). This is an important step that prevents premature

capacitation in sperm. Cumulus‐oocyte complexes (COCs) also

express adhesion molecules (e.g., E‐cadherin and N‐cadherin) that
are thought to be involved with the transfer of COCs to the

infundibulum and transport in the oviducts (Caballero et al., 2014;

Talbot, Shur, & Myles, 2003; Vazquez‐Levin et al., 2015).

3.2 | Fertilization

After sperm penetrate through the zona pellucida (Florman &

Wassarman, 1985), they adhere to the oocyte before fusion and

penetration. A series of studies undertaken primarily during the

1990s led to the predominant concept that ADAMs (fertilin) present

on sperm attach to integrins on the oolema of oocytes (Cho et al.,

1998; D’Cruz, 1996; Evans & Florman, 2002; Fenichel & Durand‐
Clement, 1998; Snell & White, 1996; Figure 4).

The oocyte integrin most often reported to be associated with

sperm–oocyte attachment is α6β1 (Almeida et al., 1995; M. S. Chen

et al., 1999; Takahashi et al., 2000; Yoshimura, 1997). Sperms were

also reported to express α6β1 integrin (Barraud‐Lange et al., 2007)

and αvβ3 integrin (Boissonnas et al., 2010) that participated in

sperm–oocyte attachment. It could be concluded from these studies

that both male and female gametes express integrins that are

involved in the initial interaction between sperm and oocyte.

However, the central role of α6β1 in sperm–oocyte attachment was

questioned by reports of normal fertilization in knockout mice with

oocytes that either lacked all β1 integrins (He et al., 2003) or α6
integrin (Miller, Georges‐Labouesse, Primakoff, & Myles, 2000). It

was also reported that monoclonal antibodies to β3 integrin and αv
integrin did not prevent the attachment of sperm to β1 integrin null

mice oocytes (He et al., 2003). The experimental approaches in the

latter studies have been debated and the balance of evidence

remains in support of a role for integrins, and, in particular, α6β1
in sperm–oocyte attachment (Evans, 2009; Okabe, 2018). The

above discrepancies amongst reports on integrins could indicate

that there is a degree of redundancy in cell adhesion mechanisms

that promote initial sperm–oocyte attachment. For example, the

extracellular matrix protein vitronectin is present on spermatozoa

after capacitation and was proposed to serve as a ligand for sperm

attachment to the oocyte, potentially through the integrin αvβ6 (Fusi,

Lorenzetti, Vignali, & Bronson, 1992).

The action of integrins includes interaction with the integrin‐
associated cell‐surface protein tetraspanin CD9 (Reyes et al., 2018;

Termini & Gillette, 2017; Zhu & Evans, 2002; Ziyyat et al., 2006;

Figure 2). A role for CD9 in the attachment of sperm ADAM2 to

oocyte α6β1 was demonstrated in mice using CD9 knockout models

(Kaji et al., 2000; Miyado et al., 2000; Le Naour, Rubinstein, Jasmin,

Prenant, & Boucheix, 2000) and with the use of monoclonal

antibodies to CD9 (M. S. Chen et al., 1999; Stein, Primakoff, &

Myles, 2004). The involvement of CD9 in sperm–oocyte attachment

F IGURE 4 Diagrammatic
representation of cell–cell adhesion
molecules shown to be involved in initial

attachment between sperm and oocyte
oolema. The families of adhesion molecules
involved include ADAMs, cadherins, and

integrins. Different families are considered
to be involved in sperm–oolema
attachment in different species. ADAM, a
disintegrin and metalloproteinases
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was subsequently demonstrated for other mammals (Kaji & Kudo,

2004; Rubinstein, Ziyyat, Wolf, Le Naour, & Boucheix, 2006; Stein

et al., 2004). It was proposed that the role of CD9 is to induce a

redistribution of adhesion molecules including α6β1 on the surface of

oocytes, as a process that precedes sperm–oocyte fusion (Jegou

et al., 2011; Ziyyat et al., 2006). Combining the above information, it

would appear that while ADAMs on sperm and α6β1 on oocytes are

players in sperm–oocyte adhesion, CD9 is fundamentally required for

gamete attachment, fusion, and fertilization (Bianchi et al., 2014;

Jegou et al., 2011). Molecules involved in the actual sperm–oocyte

infusion process include JUNO and IZUMO (Aydin, Sultana, Li,

Thavalingam, & Lee, 2016; Bianchi, Doe, Goulding, & Wright, 2014;

Evans, 2002; Georgadaki, Khoury, Spandidos, & Zoumpourlis, 2016;

Sutovsky, 2009; Vjugina & Evans, 2008).

3.3 | Embryonic development

Early embryos undergo a process called compaction, which leads to

the formation of two distinct morphological features—the inner cell

mass (ICM) and trophectoderm (Collins & Fleming, 1995; Pauken

& Capco, 1999; Saini & Yamanaka, 2018; Soom et al., 1997; White,

Bissiere, Alvarez, & Plachta, 2016). The ICM develops into

the embryo and the trophectoderm forms extraembryonic struc-

tures including the placenta. Adhesion molecules have important

functions starting from the initial stages of compaction through to

implantation, and also in ongoing embryonic development (Barone

& Heisenberg, 2012; Bloor et al., 2002; Fierro‐Gonzalez, White,

Silva, & Plachta, 2013; Fleming et al., 2001; Halbleib & Nelson,

2006; Kintner, 1992; Moore, Tao, Meng, Smith, & Xu, 2014; Nose &

Takeichi, 1986; Pfeffer, 2018; Watson & Barcroft, 2001; White &

Plachta, 2013). A series of studies, primarily using mouse and rat

models, have led to the understanding that E‐cadherin and N‐
cadherin are required for the development of normal embryos,

while P‐cadherin appears not to be required for early embryogen-

esis (Kan et al., 2007; Radice et al., 1997). Formation of the

trophectoderm epithelium is the first adhesion‐dependent differ-

entiation in the developing embryo and is influenced by E‐cadherin
(Fleming et al., 2001; Marrs & Nelson, 1996; Shehu, Marsicano,

Flechon, & Galli, 1996; Watson & Barcroft, 2001), although E‐
cadherin may not be obligatory (Filimonow et al., 2019). Mouse

embryos with mutated E‐cadherin that lacked Ca2+ binding had a

disorganized morula shortly after compaction and failed to develop

(Riethmacher, Brinkmann, & Birchmeier, 1995). In other E‐cadherin
mutation studies in mice, embryos showed compaction and

developed into blastocysts but failed to form a trophectoderm

(Kan et al., 2007; Larue, Ohsugi, Hirchenhain, & Kemler, 1994;

Radice et al., 1997). In the latter studies, residual maternal (oocyte)

E‐cadherin was able to support some compaction but did not

support the formation of a functional trophectoderm (Stephenson,

Yamanaka, & Rossant, 2010; de Vries et al., 2004). Embryos that

lack a properly constituted trophectoderm are unable to achieve

implantation and do not develop.

The expression and distribution of E‐cadherin were studied

during the transition from the maternal to the embryonic genome

using in vitro fertilization (IVF) embryos from adult and juvenile

sheep (Modina et al., 2010). Embryos from adult sheep showed the

expected expression and cellular distribution of E‐cadherin, while

embryos from juvenile sheep showed uneven distribution in

disorganized blastomeres. It was suggested that the normal expres-

sion of E‐cadherin is required for embryo organization and develop-

ment in sheep (Modina et al., 2010). Embryos derived from previously

vitrified sheep oocytes had altered expression of E‐cadherin and

showed poor development (Shirazi, Heidari, Shams‐Esfandabadi,
Momeni, & Derafshian, 2015). Vitrified buffalo embryos also showed

altered expression of E‐cadherin and β‐catenin and had a low

pregnancy rate (Moussa et al., 2019).

3.4 | Embryonic attachment and implantation

After hatching from the zona pellucida, trophoblasts interact with the

extracellular matrix to move within the lumen of the uterus, and also

with the uterine epithelium to achieve initial apposition (Sutherland,

Calarco, & Damsky, 1988). Adhesion between the uterine endome-

trial epithelia and the trophectoderm epithelia is a prerequisite for

attachment and implantation (Biggers, Bell, & Benos, 1988; Davidson

& Coward, 2016; Figure 5).

Interaction of the trophoblast with both the extracellular matrix

and uterine epithelium involves adhesion molecules (Lessey, 2002;

van Mourik, Macklon, & Heijnen, 2009). Integrins are one of the

predominant families of adhesion molecules present on the trophec-

toderm (Sutherland, Calarco, & Damsky, 1993). These integrins

adhere to integrins expressed by the uterine epithelium (Bowen &

Hunt, 2000; Bowen et al., 1996; Kang, Forbes, Carver, & Aplin, 2014;

Figure 5). The interaction between trophoblast and uterine integrins

appears to be facilitated by reduced expression of the antiadhesion

protein MUC‐1 at the point of trophoblast apposition with the

uterus. This has been demonstrated for rodents, livestock, and

primates (Aplin et al., 2001; Bowen et al., 1996; DeSouza, Mani,

Julian & Carson, 1998; Hild‐Petito, Fazleabas, Julian, & Carson, 1996;

Spencer, Johnson, Bazer, & Burghardt, 2004; Figure 5).

Integrins interact with the extracellular matrix protein osteo-

pontin (secreted phosphoprotein 1; Denhardt & Guo, 1993; Johnson,

Burghardt, Bazer, & Spencer, 2003). It was proposed that osteopon-

tin was the bridge that linked the integrin αvβ6 on the trophectoderm

to αvβ6 on uterine luminal epithelial cells in pigs and sheep (Erikson,

Burghardt, Bayless, & Johnson, 2009; Johnson, Burghardt, & Bazer,

2014; Johnson et al., 2001) and humans (Kang et al., 2014). It was

also reported that osteopontin bound αvβ3 and α5β1 on the

trophectoderm to facilitate migration and attachment to the uterine

epithelium in sheep (Kim et al., 2010). In one study, αvβ6 and

osteopontin were found not to colocalize in trophoblasts and uterine

epithelium in sheep and cattle, and it was concluded from this finding

that these proteins may not always cooperate in embryo attachment

in ruminants (Kimmins, Lim, & MacLaren, 2004).
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Attachment of the trophectoderm to the uterine epithelia has

received considerable attention in humans. One line of research

suggests that E‐cadherin is involved in initial adhesion between

the trophoblast and uterus (Kokkinos et al., 2010). This is followed

by the reduced expression of E‐cadherin by epithelial cells and

loosening of cell–cell adhesion within the epithelial layer. The latter

allows the infiltration of the trophoblast and commencement

of implantation (Aplin & Ruane, 2017; Coutifaris et al., 1991;

Kokkinos et al., 2010). The second line of research in humans has

proposed that the binding protein L‐selectin is expressed by

trophoblasts and interacts with its ligand on uterine epithelia

(Feng et al., 2017; Fukuda & Sugihara, 2008; Genbacev et al.,

2003; Lai et al., 2005). This is followed by attachment through the

homotrophic (self‐binding) adhesion molecule trophinin that is

present on the trophoblast and uterine endometrial epithelia

(Fukuda & Sugihara, 2008; Fukuda et al., 1995; Genbacev

et al., 2003; Sugihara et al., 2007; Suzuki et al., 1999; Figure 5).

Other adhesion molecules reported to have a role in

trophoblast–endometrial cell adhesion in humans are bystin and

tastin (Suzuki et al., 1999; Figure 5).

It can be concluded from the above that both within and between

species, a range of adhesion molecules can be involved in the initial

attachment of the trophoblast to the uterine epithelium. For

example, annexin A1 and annexin A2 were reported to have a lesser

expression in the chorioamnion and adjacent uterine caruncles for

embryos with retarded development compared to embryos with

normal development in the Italian Mediterranean River buffalo

(Balestrieri et al., 2013; Strazzullo et al., 2014). Annexin A2 has been

specifically implicated in embryo attachment in humans (Barone &

Heisenberg, 2012; Garrido‐Gomez et al., 2012) and mice (Wang et al.,

2015), while annexin A1 is involved with general cell adhesion

(Horlacher et al., 2011). The studies in River Buffalo provided a clear

demonstration of altered adhesion molecule function in a well‐
characterized model of retarded embryonic development (Campanile,

Neglia, & D’Occhio, 2016).

4 | ADHESION MOLECULES AND
REPRODUCTION IN CATTLE

Fertilization rates in cattle are in the order of 85–90% but up to

40–50% of embryos do not result in a pregnancy (D’Occhio et al.,

2019; Sponchiado et al., 2019). The low embryo survival in cattle

provides a compelling reason for more research to better understand

the biology of early reproductive events in cattle. Within the context

of this review, studies in buffaloes (Moussa et al., 2019), pigs (Bowen

et al., 1996), and sheep (Modina et al., 2010; Shirazi et al., 2015) have

shown important roles for adhesion molecules in early embryonic

development in livestock. It is known that Days 8–17, bovine

embryos secrete interferon‐tau (IFNT), which induces the expression

of uterine IFNT‐stimulated genes that are involved with implantation

(D’Occhio et al., 2019). The argument is made in this review that

the expression of adhesion molecules by the embryo and uterus is as

equally important for the establishment of a pregnancy. This section

looks at what is known for adhesion molecules and early reproduc-

tive events in cattle. Areas are identified where a deeper under-

standing of the role of adhesion molecules should lead to new

strategies for improving embryonic survival. Cattle are the focus

given their low embryo survival and importance in global food

systems. A major improvement in reproductive efficiency in

cattle would have biological significance and would also help to

achieve production, social, and environmental objectives (D’Occhio

et al., 2019).

Bovine oviduct epithelial cells in culture secreted the extra-

cellular matrix protein fibronectin (Singh, Carraher, & Schwarzbauer,

2010) which attached to the integrin α5β1, a fibronectin ligand,

present on sperm (Osycka‐Salut et al., 2017). It was proposed that

fibronectin‐sperm α5β1 attachment is involved in sperm interaction

with the oviduct which maintains sperm integrity before fertilization

(Osycka‐Salut et al., 2017). Fibronectin and α5β1 were also reported

to be expressed by bovine sperm and oocytes during IVF (Thys et al.,

2009). This led to the suggestion that fibronectin acts as “velcro” to

F IGURE 5 Diagrammatic representation of cell–cell adhesion molecules shown to be involved in initial attachment between the trophoblast and
uterine endometrial epithelium. The families of adhesion molecules involved include cadherins, integrins, trophinins, L‐selectins (Feng et al., 2017), bystins
(Suzuki et al., 1998), and tastins (Bloor et al., 2002). Different adhesion molecules are thought to be involved in trophoblast–endometrium interaction in
different species. The attachment exclusion molecule MUC‐1 is not expressed in the segment of the endometrial epithelium where attachment of the
trophoblast occurs. ICM, inner cell mass
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facilitate initial sperm–oocyte attachment in cattle (Thys et al., 2009).

In one study, bovine oocytes expressed a number of α‐subunit and

β‐subunit integrins, further suggesting a role for integrins in

sperm–oocyte interaction in cattle (Pate et al., 2007). An integrin

ligand with the RGD (Arg‐Gly‐Asp) motif was found to induce

parthenogenetic development in bovine oocytes (Campbell, Reed, &

White, 2000). Single‐nucleotide polymorphisms (SNPs) in the integrin

β5 gene (ITGB5) and extracellular matrix protein collagen Type 1

alpha 2 gene (COL1A2) were associated with fertility in bulls

(Feugang et al., 2009). Also, integrin β5 antibodies reduced the

ability of bovine sperm to fertilize oocytes (Feugang et al., 2009). It

can be concluded that integrins are involved in early functions of

bovine gametes and in sperm–oocyte attachment. E‐cadherin and

β‐catenin were also found to be expressed by bovine oviduct

epithelial cells, sperm, and COCs, suggesting a role also for cadherins

in sperm–oocyte attachment and fertilization in cattle (Caballero

et al., 2014). ADAMs are additionally expressed on bovine sperm and

can have a role in sperm–oocyte attachment (Waters &White, 1997).

Osteopontin was located on bovine sperm and was proposed to bind

integrins, and/or other binding molecules, on oocytes during initial

sperm–oocyte attachment in cattle (Erikson, Way, Chapman, &

Killian, 2007).

Bovine IVF embryos express E‐cadherin and β‐catenin. The

expression is related to the stage of development (Barcroft et al.,

1998; Shehu et al., 1996) and, in one study, expression was greater in

good quality blastocysts compared to poor quality blastocysts

(Sathanawongs, Nganvongpanit, & Mekchay, 2012). IFNT enhanced

the development of bovine IVF embryos (Bao, Zhao, Haq, & Zeng,

2014; Zhao, Wu, Gao, Evans, & Zeng, 2017) and this was associated

with upregulation of E‐cadherin and connexin 43, the latter a gap

junction intercellular communication protein (Ribeiro‐Rodrigues
et al., 2017). Suppression of the E‐cadherin gene and connexin 43

gene using RNA interference decreased the proportion of bovine

embryos that developed to blastocysts (Nganvongpanit et al., 2006;

Tesfaye et al., 2007). The expression of E‐cadherin and connexin 43

in bovine embryos was influenced by the culture system and whether

embryos were produced in vivo or in vitro (Lonergan et al., 2003;

Niemann & Wrenzycki, 1999; Wrenzycki, Herrmann, Carnwath, &

Niemann, 1996, 1999; Wrenzycki, Herrmann et al., 2001). Bovine

embryos produced by nuclear transfer had a similar relative

abundance of E‐cadherin messenger RNA as IVF embryos (Wren-

zycki, Wells et al., 2001). Combined, these findings strongly suggest

that E‐cadherin is fundamental to embryonic development in cattle.

The trophectoderm of bovine embryos has a polarized epithelium

that develops into mononucleated and binucleate cells (Barcroft

et al., 1998; Igwebuike, 2006; Negron‐Perez, 2017; Wooding, 1982;

Wooding & Wathes, 1980). Bovine embryos express E‐cadherin and

β‐catenin during binucleate cell differentiation (Barcroft et al., 1998;

Nakano et al., 2002; Nakano, Shimada, Imai, Takahashi, & Hashizume,

2005). However, it has yet to be conclusively shown that the

cadherin–catenin system is obligatory for this differentiation to take

place in cattle embryos (Negron‐Perez, 2017). The outgrowth of

hatched bovine blastocysts was studied in cultures with the

extracellular matrix proteins fibronectin, laminin, and vitronectin.

All three matrix proteins supported outgrowth, apparently by acting

as ligands for trophoblast integrins (Singleton & Menino, 2005;

M. Takahashi, Takahashi, Hamano, Takahashi, & Okano, 2005). It was

suggested that bovine endodermal cells can also use nonintegrin cell

adhesion mechanisms during outgrowth (Singleton & Menino, 2005).

Binucleate cells of the trophectoderm epithelium are involved in

the attachment of the elongating trophoblast to the uterine

epithelium in cattle (Bowen & Burghardt, 2000; Wooding, 1992). A

range of adhesion molecules and their ligands have been implicated

in the process of attachment and implantation in cattle. These include

ADAMs, E‐cadherin and N‐cadherin, vascular cell adhesion molecule,

integrins and their ligands, selectins and their ligands, and extra-

cellular matrix proteins (fibronectin, selectin; MacIntyre et al., 2002;

Xiang & MacLaren, 2002; Sakurai et al., 2012; Bai et al., 2014, 2015;

Imakawa & Kusama, 2018). The bovine uterine epithelium expresses

integrins and the extracellular matrix proteins collagen IV and

laminin during attachment and implantation (Kimmins & MacLaren,

1999; MacIntyre et al., 2002). In one study, however, the integrin

αvβ3 was not expressed by bovine trophoblast, and αvβ3 and its ligand

osteopontin did not colocalize in the bovine uterine epithelium

(Kimmins et al., 2004). This led to the suggestion that αvβ3 may not

be obligatory for trophoblast–uterine attachment in cattle. In this

regard, IFNT stimulated the expression of E‐cadherin and β‐catenin
in cultured bovine endometrial epithelial cells (Barragan, 2006).

Bovine embryos produced by somatic cell nuclear transfer

(SCNT) had reduced amounts of E‐cadherin and β‐catenin proteins,

and the corresponding cotyledons had altered localization of

E‐cadherin and β‐catenin (Kohan‐Ghadr, Smith, Arnold, Murphy, &

Lefebvre, 2012). This was proposed as one explanation for

inadequate placentation associated with bovine nuclear transfer

embryos. In another study, genes associated with Ca2+ mobilization

and trophoblast adhesion had different expression in uterine

endometrium amongst bovine in vivo, IVF, and SCNT embryos

(Mansouri‐Attia et al., 2009). Uterine gene expression in cattle would

appear to reflect the capacity of an embryo to attach, implant, and

establish a pregnancy. Other studies in cattle have provided strong

evidence that uterine gene expression differs between animals with

inherently low and high fertility, which is independent of embryonic

factors (McMillan & Donnison, 1999; Minten et al., 2013; Petersen &

Lee, 2003). A major advance in embryonic survival in cattle could,

therefore, include the identification and multiplication of females

that have a genetic predisposition for an optimal uterine function to

establish and maintain a pregnancy. Whole‐genome association

studies have an important application in identifying SNPs for embryo

survival and pregnancy in cattle. For example, SNPs in the L‐selectin
gene cluster were associated with fertility and longevity in Holstein

Friesian cows (X. Chen et al., 2017). In a recent study in female

Brahman and Nellore cattle (de Melo, Fortes, Hayes, de Albuquerque,

& Carvalheiro, 2019), SNPs associated with fertility were linked with

blastocyst development (genes GCGN, ATF6B; Gad et al., 2011),

embryonic development (genes NF1B, NAPA, ZPR1, TAF8, HEX1M1,

HEX1M2; Mamo et al., 2011; Al Naib, Mamo, & Lonergan, 2012),
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uterine function (genes C11H2orf49, CCND3; Hayashi et al., 2017),

and general cell proliferation and morphogenesis (gene CHSY1;

Becker‐Santos, Lonergan, Gronostajski, & Lam, 2017). While the

study of de Melo et al. (2019) did not specifically address adhesion

molecules it did illustrates the importance of early reproductive

events in determining reproductive outcome. Within the context of

the present review, it can be assumed that differences in conceptus

and uterine function linked to SNPs would impact on adhesion

molecules as a part of the broader picture of factors that influence

embryo survival, implantation, and pregnancy in cattle.

It will be important to establish clearer roles for adhesion

molecules in sperm–oocyte interaction, embryonic development, and

embryonic attachment and implantation in cattle. This will require

standardized, systematic, and well‐designed and executed studies.

The current literature is limited by recurring discrepancies that, in

part, reflect research bias and poor design. The case is made in this

review that major advances in the efficiency of natural mating and

assisted breeding in cattle will depend on a deeper understanding of

the cellular and molecular mechanisms that support early reproduc-

tive events. Particularly important will be a greater understanding of

the role of adhesion molecules. An appropriate balance of discovery

and applied research is needed. With regard the latter, the increasing

use of assisted reproductive technology in cattle provides the

opportunity for rapid application of new knowledge of gametes and

embryos.

5 | CONCLUSION AND PERSPECTIVES

The action of adhesion molecules in cell–cell contact and cell signaling

during cellular movement and in shaping tissues merges with the field

of mechanobiology or mechanotransduction (Hoffman & Yap, 2015;

Sun, Guo, & Fassler, 2016). This brings together biology and physical

forces that operate in cellular systems (Leckband & de Rooij, 2014), and

is particularly relevant to the functions of gametes and embryos. It is

abundantly clear that adhesion molecules have important roles in

gamete transport, sperm–oocyte interaction, embryonic development,

and implantation. Less clear are the specific families of adhesion

molecules and extracellular matrix proteins involved at each phase of

early reproductive events. This is partly the result of species

differences but it is also due to different emphases and experimental

approaches across studies. The reader would have noted that many of

the cited papers were published in the late 1900s and early 2000s.

Research in the field has tended to move to cancer biology with less

activity in reproduction. This could be partly due to the ability to secure

funding in different fields of science. Whatever the reasons, adhesion

molecules seem to be largely overlooked when considering reproduc-

tive mechanisms. This needs to be addressed given the fundamental

roles for adhesion molecules presented in this review. A strong case

can be made that a renewed emphasis on adhesion molecules and

reproduction, combined with enabling technology platforms (e.g.,

assisted reproductive technology, genomics), will provide new insight

into reproductive mechanisms (Matsumoto, 2017). In turn, this will

inform new strategies to improve the efficiency of natural mating and

assisted breeding in mammals.
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