1,399 research outputs found

    Are many radio-selected BL Lacs radio quasars in disguise?

    Full text link
    We show that a blazar classification in BL Lacs and Flat Spectrum Radio Quasars may not be adequate when it relies solely on the equivalent widths (EWs) of optical lines. In fact, depending on redshift, some strong emission lines can fall in the infrared window and be missed. We selected a sample of BL Lacs with firm redshift identification and good visibility from Paranal. We targeted with the X-shooter spectrograph the five BL Lacs with z > 0.7, i.e., those for which the Halpha line, one of the strongest among blazars, falls outside the optical window and determined the EW of emission lines in both the infrared and optical bands. Two out of five sources show an observed Halpha EW > 5A (one has rest frame EW > 5A) and could be classified as FSRQs by one of the classification schemes used in the literature. A third object is border-line with an observed EW of 4.4 +/- 0.5A. In all these cases Halpha is the strongest emission line detected. The Halpha line of the other two blazars is not detected, but in one case it falls in a region strongly contaminated by sky lines and in the other one the spectrum is featureless. We conclude that a blazar classification based on EW width only can be inaccurate and may lead to an erroneous determination of blazar evolution. This effect is more severe for the BL Lac class, since FSRQs can be misclassified as BL Lacs especially at high redshifts (z > 0.7), where the latter are extremely rare.Comment: 6 pages, 4 ps figures, 2 tables, accepted for publication in MNRA

    A High Phase Advance Damped and Detuned Structure for the Main Linacs of Clic

    Full text link
    The main accelerating structures for the CLIC are designed to operate at an average accelerating gradient of 100 MV/m. The accelerating frequency has been optimised to 11.994 GHz with a phase advance of 2{\pi}/3 of the main accelerating mode. The moderately damped and detuned structure (DDS) design is being studied as an alternative to the strongly damped WDS design. Both these designs are based on the nominal accelerating phase advance. Here we explore high phase advance (HPA) structures in which the group velocity of the rf fields is reduced compared to that of standard (2{\pi}/3) structures. The electrical breakdown strongly depends on the fundamental mode group velocity. Hence it is expected that electrical breakdown is less likely to occur in the HPA structures. We report on a study of both the fundamental and dipole modes in a CLIC_DDS_HPA structure, designed to operate at 5{\pi}/6 phase advance per cell. Higher order dipole modes in both the standard and HPA structures are also studied

    Analysis of X-ray flares in GRBs

    Get PDF
    We present a detailed study of the spectral and temporal properties of the X-ray flares emission of several GRBs. We select a sample of GRBs which X-ray light curve exhibits large amplitude variations with several rebrightenings superposed on the underlying three-segment broken powerlaw that is often seen in Swift GRBs. We try to understand the origin of these fluctuations giving some diagnostic in order to discriminate between refreshed shocks and late internal shocks. For some bursts our time-resolved spectral analysis supports the interpretation of a long-lived central engine, with rebrightenings consistent with energy injection in refreshed shocks as slower shells generated in the central engine prompt phase catch up with the afterglow shock at later times.Comment: 9 pages, 3 figures. Invited talk at the Swift-Venice 2006 meeting to be published by "Il Nuovo Cimento

    Non variability of intervening absorbers observed in the UVES spectra of the "naked-eye" GRB080319

    Full text link
    The aim of this paper is to investigate the properties of the intervening absorbers lying along the line of sight of Gamma-Ray Burst (GRB) 080319B through the analysis of its optical absorption features. To this purpose, we analyze a multi-epoch, high resolution spectroscopic observations (R=40000, corresponding to 7.5 km/s) of the optical afterglow of GRB080319B (z=0.937), taken with UVES at the VLT. Thanks to the rapid response mode (RRM), we observed the afterglow just 8m:30s after the GRB onset when the magnitude was R ~ 12. This allowed us to obtain the best signal-to-noise, high resolution spectrum of a GRB afterglow ever (S/N per resolution element ~ 50). Two further RRM and target of opportunity observations were obtained starting 1.0 and 2.4 hours after the event, respectively. Four MgII absorption systems lying along the line of sight to the afterglow have been detected in the redshift range 0.5 < z < 0.8, most of them showing a complex structure featuring several components. Absorptions due to FeII, MgI and MnII are also present; they appear in four, two and one intervening absorbers, respectively. One out of four systems show a MgII2796 rest frame equivalent width larger than 1A. This confirms the excess of strong MgII absorbers compared to quasars, with dn/dz = 0.9, ~ 4 times larger than the one observed along quasar lines of sight. In addition, the analysis of multi-epoch, high-resolution spectra allowed us to exclude a significant variability in the column density of the single components of each absorber. Combining this result with estimates of the size of the emitting region, we can reject the hypothesis that the difference between GRB and QSO MgII absorbers is due to a different size of the emitting regions.Comment: 10 pages, 15 ps figures, submitted to MNRA

    X-Shooter spectroscopy of young stellar objects: V - Slow winds in T Tauri stars

    Full text link
    Disks around T Tauri stars are known to lose mass, as best shown by the profiles of forbidden emission lines of low ionization species. At least two separate kinematic components have been identified, one characterised by velocity shifts of tens to hundreds km/s (HVC) and one with much lower velocity of few km/s (LVC). The HVC are convincingly associated to the emission of jets, but the origin of the LVC is still unknown. In this paper we analyze the forbidden line spectrum of a sample of 44 mostly low mass young stars in Lupus and σ\sigma-Ori observed with the X-Shooter ESO spectrometer. We detect forbidden line emission of [OI], [OII], [SII], [NI], and [NII], and characterize the line profiles as LVC, blue-shifted HVC and red-shifted HVC. We focus our study on the LVC. We show that there is a good correlation between line luminosity and both Lstar_{star} and the accretion luminosity (or the mass-accretion rate) over a large interval of values (Lstar_{star} 1021\sim 10^{-2} - 1 L_\odot; Lacc_{acc} 105101\sim 10^{-5} - 10^{-1} L_\odot; M˙acc\dot M_{acc} 1011107\sim 10^{-11} - 10^{-7} M_\odot/yr). The lines show the presence of a slow wind (Vpeak108V_{peak}10^8 cm3^{-3}), warm (T500010000\sim 5000-10000 K), mostly neutral. We estimate the mass of the emitting gas and provide a value for the maximum volume it occupies. Both quantities increase steeply with the stellar mass, from 1012\sim 10^{-12} M_\odot and 0.01\sim 0.01 AU3^3 for Mstar_{star}0.1\sim 0.1 M_\odot, to 3×1010\sim 3 \times 10^{-10} M_\odot and 1\sim 1 AU3^3 for Mstar_{star}1\sim 1 M_\odot, respectively. These results provide quite stringent constraints to wind models in low mass young stars, that need to be explored further

    Thermal monopoles and selfdual dyons in the Quark-Gluon Plasma

    Full text link
    We perform a numerical study of the excess of non-abelian gauge invariant gluonic action around thermal abelian monopoles which populate the deconfined phase of Yang-Mills theories. Our results show that the excess of magnetic action is close to that of the electric one, so that thermal abelian monopoles may be associated with physical objects carrying both electric and magnetic charge, i.e. dyons. Thus, the quark gluon plasma is likely to be populated by selfdual dyons, which may manifest themselves in the heavy-ion collisions via the chiral magnetic effect. Thermodynamically, thermal monopoles provide a negative contribution to the pressure of the system.Comment: 9 pages, 4 figures, RevTeX 4.

    The candidate filament close to the 3C295 galaxy cluster: optical and X-ray spectroscopy

    Full text link
    We present a detailed analysis of the overdensity of X-ray sources colse to the 3C 295 galaxy cluster (z=0.46) to assess whether it is associated with a filament of the large-scale structure of the Universe. We obtained optical spectra of the optical counterparts of eleven sources associated with the filament, finding that one is at z=0.474. This is a type 1 AGN at 1.5 arcmin from the cluster center. We found three more sources with a redshift in the range 0.37 - 0.53. We extracted the stacked X-ray spectrum of 47 X-ray sources belonging to the putative filament. We found a significant narrow (at the resolution of the Chandra ACIS-I) line at E ~ 4.4 keV, the energy of the iron Kalpha line at the redshift of the cluster. The detection of this line is confirmed at a confidence level of better than 3sigma and its energy is constrained to be in the range 6.2--6.47 (at a 90% confidence level), excluding an identification with the 6.7 helium-like iron line from the hot cluster ICM at better than 4 sigma. We conclude that the detection of the redshifted line is a strong indication that at least several of the excess sources lie at z ~ 0.46 and that AGNs are efficient tracers of the ``filament'' connected with the central cluster of galaxies.Comment: 7 Pages 9 .ps figures, A&A in pres
    corecore