6 research outputs found
Key signalling nodes in mammary gland development and cancer: Myc
Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer
Species-Specific Differences in the Activity and Nuclear Localization of Murine and Bovine Phospholipase C Zeta 11
Injection of mammalian sperm extracts or cRNA of the sperm-specific phospholipase C zeta 1 (PLCZ1) has been shown to trigger repetitive oscillations in the concentration of free calcium ([Ca2+]i), leading to oocyte activation and embryo development in all mammals studied to date. While PLCZ1 has cross-species activity, it has also been observed that species-specific differences may exist in the frequency and pattern of the resulting [Ca2+]i oscillations following PLCZ1 cRNA injection into oocytes of different species. Accordingly, we used a crossover design strategy to directly investigate the activity of murine and bovine PLCZ1 in both murine and bovine oocytes. In murine oocytes, injection of murine Plcz1 cRNA induced [Ca2+]i oscillations at 10-fold lower concentrations than bovine PLCZ1, although in bovine oocytes bovine PLCZ1 was more effective than murine Plcz1 at inducing [Ca2+]i oscillations. Investigation of ITPR1 (IP3R1) down-regulation in bovine oocytes by PLCZ1 cRNA also showed that bovine PLCZ1 was more active in homologous oocytes. To determine whether these PLCZs exhibited similar cellular distribution, Venus-tagged PLCZ1 cRNA was injected into oocytes, and PLCZ1 was overexpressed. Bovine PLCZ1 failed to accumulate in the pronucleus (PN) of bovine or murine zygotes, despite possessing a putative nuclear localization signal. Conversely, murine PLCZ1 accumulated in the PN of both murine and bovine zygotes. These results demonstrate that murine PLCZ1 and bovine PLCZ1 possess species-specific differences in activity and suggest potential differences in the mode of action of the protein between the two species. Variation in sperm PLCZ1 protein content among species, along with oocyte-specific differences in the localization and availability of PLCZ1 substrates, may further contribute to optimize the activation stimulus to enhance embryo development
Dynamic changes in localization of chromobox (CBX) family members during the maternal to embryonic transition
The Chromobox domain (Cbx) gene family, consisting of Polycomb and Heterochromatin Protein 1 genes, is involved in transcriptional repression, cell cycle regulation and chromatin remodeling. We report the first study of gene expression and protein localization of the Cbx genes in in vitro produced bovine embryos. All but one gene (Cbx6) were expressed. This was confirmed by immunolocalization for HP1α, β, γ, and Pc2, 3. HP1β was found in the nuclei of embryos from the two-cell stage onwards, whereas HP1γ showed diffuse cytoplasmic/nuclear localization at the two- and eight-cell stages, and predominantly nuclear localization at the four-cell stage and the 16-cell stage onwards. Leptomycin B (LMB), a specific inhibitor of the nuclear export protein CRM-1 (chromosomal regional maintenance-1), was found to increase nuclear localization of HP1γ at the eight-cell stage, and to prevent progression past this stage of embryogenesis. This indicates that HP1γ possesses a CRM-1-dependent nuclear export pathway which may represent part of the basis of HP1γ's ability to shuttle between the nucleus and the cytoplasm in dynamic fashion. HP1α was expressed in embryonic nuclei at all stages, but was found to relocalise from euchromatin to heterochromatin during the maternal to embryonic transition (MET). In contrast, Pc2 and Pc3 were evenly distributed between cytoplasm and nucleus until the eight- and sixteen-cell stages or the morula stage, respectively, before relocating preferentially to the cytoplasm. Collectively, the results suggest that dynamic changes of the nuclear-cytoplasmic and subnuclear distribution of members of the Cbx family may be central to the MET