21 research outputs found
Emerging perspectives on laminopathies
Giovanna Lattanzi,1,2 Sara Benedetti,3 Maria Rosaria D'Apice,4 Lorenzo Maggi,5 Nicola Carboni,6 Emanuela Scarano,7 Luisa Politano8 1National Research Council of Italy, Institute for Molecular Genetics (CNR-IGM), Unit of Bologna, 2Rizzoli Orthopedic Institute, Laboratory of Musculoskeletal Cell Biology, Bologna, 3Laboratory of Clinical Molecular Biology and Cytogenetics, San Raffaele Scientific Institute, Milan, 4Fondazione Policlinico Tor Vergata, Rome, 5Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C Besta, Milan, 6Division of Neurology, Hospital San Francesco, Nuoro, 7Pediatric Endocrinology and Rare Diseases Unit, Department of Pediatrics, S Orsola-Malpighi University Hospital, University of Bologna, Bologna, 8Department of Experimental Medicine, Cardiomyology and Medical Genetics, Second University of Naples, Naples, Italy Abstract: Laminopathies are a group of inherited disorders caused by mutations in the lamin A/C gene, and can affect diverse organs or tissues, or can be systemic, causing premature aging. In the present review, we report on the composition and structure of the nuclear lamina and the role of lamins in nuclear mechanics and their involvement in human diseases, and provide some examples of laminopathies and current therapeutic approaches. Keywords: lamin A/C, emerin, laminopathies, Emery–Dreifuss muscular dystrophy, Hutchinson–Gilford progeri
The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence
AKTIP is a shelterin-interacting protein required for replication of telomeric
DNA. Here, we show that AKTIP biochemically interacts with A- and B-type
lamins and affects lamin A, but not lamin C or B, expression. In interphase
cells, AKTIP localizes at the nuclear rim and in discrete regions of the
nucleoplasm just like lamins. Double immunostaining revealed that
AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase
cells, and that proper AKTIP localization requires functional lamin A. In
mitotic cells, AKTIP is enriched at the spindle poles and at the midbody
of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid
phenotype. Collectively, our results indicate that AKTIP is a new player in
lamin-related processes, including those that govern nuclear architecture,
telomere homeostasis and cellular senescence
Workload measurement for molecular genetics laboratory: A survey study
Genetic testing availability in the health care system is rapidly increasing, along with the diffusion of next-generation sequencing (NGS) into diagnostics. These issues make imperative the knowledge-drive optimization of testing in the clinical setting. Time estimations of wet laboratory procedure in Italian molecular laboratories offering genetic diagnosis were evaluated to provide data suitable to adjust efficiency and optimize health policies and costs. A survey was undertaken by the Italian Society of Human Genetics (SIGU). Forty-two laboratories participated. For most molecular techniques, the most time-consuming steps are those requiring an intensive manual intervention or in which the human bias can affect the global process time-performances. For NGS, for which the study surveyed also the interpretation time, the latter represented the step that requiring longer times. We report the first survey describing the hands-on times requested for different molecular diagnostics procedures, including NGS. The analysis of this survey suggests the need of some improvements to optimize some analytical processes, such as the implementation of laboratory information management systems to minimize manual procedures in pre-analytical steps which may affect accuracy that represents the major challenge to be faced in the future setting of molecular genetics laboratory
Novel mutations of TCOF1 gene in European patients with treacher Collins syndrome
Background: Treacher Collins syndrome (TCS) is one of the most severe autosomal dominant congenital disorders of craniofacial development and shows variable phenotypic expression. TCS is extremely rare, occurring with an incidence of 1 in 50.000 live births. The TCS distinguishing characteristics are represented by down slanting palpebral fissures, coloboma of the eyelid, micrognathia, microtia and other deformity of the ears, hypoplastic zygomatic arches, and macrostomia. Conductive hearing loss and cleft palate are often present. TCS results from mutations in the TCOF1 gene located on chromosome 5, which encodes a serine/alanine-rich nucleolar phosphoprotein called Treacle. However, alterations in the TCOF1 gene have been implicated in only 81-93% of TCS cases. Methods: In this study, the entire coding regions of the TCOF1 gene, including newly described exons 6A and 16A, were sequenced in 46 unrelated subjects suspected of TCS clinical indication. Results: Fifteen mutations were reported, including twelve novel and three already described in 14 sporadic patients and in 3 familial cases. Moreover, seven novel polymorphisms were also described. Most of the mutations characterised were microdeletions spanning one or more nucleotides, in addition to an insertion of one nucleotide in exon 18 and a stop mutation. The deletions and the insertion described cause a premature termination of translation, resulting in a truncated protein. Conclusion: This study confirms that almost all the TCOF1 pathogenic mutations fall in the coding region and lead to an aberrant protein
Molecular analysis using DHPLC of cystic fibrosis: increase of the mutation detection rate among the affected population in Central Italy
BACKGROUND: Cystic fibrosis (CF) is a multisystem disorder characterised by mutations of the CFTR gene, which encodes for an important component in the coordination of electrolyte movement across of epithelial cell membranes. Symptoms are pulmonary disease, pancreatic exocrine insufficiency, male infertility and elevated sweat concentrations. The CFTR gene has numerous mutations (>1000) and functionally important polymorphisms (>200). Early identification is important to provide appropriate therapeutic interventions, prognostic and genetic counselling and to ensure access to specialised medical services. However, molecular diagnosis by direct mutation screening has proved difficult in certain ethnic groups due to allelic heterogeneity and variable frequency of causative mutations. METHODS: We applied a gene scanning approach using DHPLC system for analysing specifically all CFTR exons and characterise sequence variations in a subgroup of CF Italian patients from the Lazio region (Central Italy) characterised by an extensive allelic heterogeneity. RESULTS: We have identified a total of 36 different mutations representing 88% of the CF chromosomes. Among these are two novel CFTR mutations, including one missense (H199R) and one microdeletion (4167delCTAAGCC). CONCLUSION: Using this approach, we were able to increase our standard power rate of mutation detection of about 11% (77% vs. 88%)
From cue to meaning: The involvement of POLD1 gene in DNA replication, repair and aging
Aging is an extremely complex biological process. Aging, cancer and inflammation represent a trinity, object of many interesting researches. The accumulation of DNA damage and its consequences progressively interfere with cellular function and increase susceptibility to developing aging condition.DNA Polymerase delta (Pol 8), encoded by POLD1 gene (MIM#174761) on 19q13.3, is well implicated in many steps of the replication program and repair. Thanks to its exonuclease and polymerase activities, the enzyme is involved in the regulation of the cell cycle, DNA synthesis, and DNA damage repair processes. Damaging variants within the exonuclease domain predispose to cancers, while those occurring in the poly-merase active site cause the autosomal dominant Progeroid Syndrome called MDPL, Mandibular hypoplasia, Deafness and Progeroid features with concomitant LipodystrophySince DNA damage represents the main cause of ageing and age-related pathologies, an overview of critical Pol 8 activities will allow to better understand the associations between DNA damage and nearly every aspect of the ageing process, helping the researchers to counteract all the ageing-pathologies at the same time
Targeted Next Generation Sequencing in patients with Myotonia Congenita
INTRODUCTION: Myotonia Congenita (MC) is a nondystrophic skeletal muscle disease characterized by muscle stiffness, weakness, delayed skeletal relaxation and hypertrophic muscle. The disease can be inherited as dominant or recessive. More than 130 mutations in CLCN1 gene have been identified. MATERIALS AND METHODS: We analyzed the entire coding region and exon-intron boundaries of the CLCN1 gene in 40 MC patients. Samples already Sanger-sequenced were successively evaluated by Next Generation Sequencing (NGS), on Ion Torrent PGM. Moreover, additional 15 patients were sequenced directly by NGS. RESULTS: NGS allowed us to identify all CLCN1 mutations except those located within exon 3, demonstrating a 96% of sensitivity. Due to primer design, one SNP (exactly rs7794560) also failed to be detected. Our results enlarge the spectrum of CLCN1 mutations and showed a novel approach for molecular analysis of MC
Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype
X-linked myotubular myopathy is characterised by neonatal hypotonia, muscle weakness and respiratory distress in affected males, leading often to early death, although prolonged survival is observed in milder forms, or as a result of prolongation of ventilation support. It is caused by mutations in the MTM1 gene, which encodes a phosphatase called myotubularin, which has been highly conserved during evolution, down to yeasts ( S. cerevisiae and S. pombe). To date, 251 mutations have been identified in unrelated families, corresponding to 158 different disease-associated mutations, which are widespread throughout the gene. We have found additional mutations in 77 patients, including 35 novel ones. We identified a missense mutation N180K in a 67-year-old grandfather (the oldest known patient with an MTM1 mutation), previously suspected to have autosomal centronuclear myopathy, and in his two grandsons also mildly affected. Mild and moderate phenotypes associated with novel missense mutations and with a translation initiation defect mutation are discussed, as well as severe phenotypes associated with particular novel mutations. With the present report, 192 different mutations in the MTM1 gene have been described in 328 families. The spectrum of mutations is now enlarged from the very severe classic neonatal phenotype to very mild phenotype allowing survival to the age of 67 year
Characterization of FMR1 Repeat Expansion and Intragenic Variants by Indirect Sequence Capture
Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200x) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives