313 research outputs found

    Electrochemical synthesis of C-glycosides as non-natural mimetics of biologically active oligosaccharides

    Get PDF
    Natural oligosaccharides inhibitors of heparanase and selectins are emerging as promising drugs for cancer therapy. As an alternative tool to the natural ones, sulfated tri maltose C-C-linked dimers (alfa,alfa alfa,beta and beta,beta STMCs) were prepared by bromo-maltotriose electroreduction on silver cathode,1 followed by sulfation. The presence of an interglycosidic C-C bond makes STMCs less vulnerable to metabolic processing then their O-analogues. For this reason, STMCs have been studied as drug candidates and inhibitors of carbohydrate processing enzymes. Their activity as inhibitor of Pselectin in vivo and in the attenuation of metastasis both on B16-BL6 melanoma cells and on MC- 38 carcinoma cells2 prompted to the optimization of their synthetic process. Therefore, the electrochemical process for the C-C coupling of the model molecule acetobromoglucose has been investigated by changing various reaction conditions such as solvent and arrangement of the electrolytic cell, aiming at the final scale-up of the reaction

    Challenges and Perspectives of Quantitative Functional Sodium Imaging (fNaI).

    Get PDF
    Brain function has been investigated via the blood oxygenation level dependent (BOLD) effect using magnetic resonance imaging (MRI) for the past decades. Advances in sodium imaging offer the unique chance to access signal changes directly linked to sodium ions (23Na) flux across the cell membrane, which generates action potentials, hence signal transmission in the brain. During this process 23Na transiently accumulates in the intracellular space. Here we show that quantitative functional sodium imaging (fNaI) at 3T is potentially sensitive to 23Na concentration changes during finger tapping, which can be quantified in gray and white matter regions key to motor function. For the first time, we measured a 23Na concentration change of 0.54 mmol/l in the ipsilateral cerebellum, 0.46 mmol/l in the contralateral primary motor cortex (M1), 0.27 mmol/l in the corpus callosum and -11 mmol/l in the ipsilateral M1, suggesting that fNaI is sensitive to distributed functional alterations. Open issues persist on the role of the glymphatic system in maintaining 23Na homeostasis, the role of excitation and inhibition as well as volume distributions during neuronal activity. Haemodynamic and physiological signal recordings coupled to realistic models of tissue function will be critical to understand the mechanisms of such changes and contribute to meeting the overarching challenge of measuring neuronal activity in vivo

    A multi-layer mean-field model of the cerebellum embedding microstructure and population-specific dynamics

    Get PDF
    Mean-field (MF) models are computational formalism used to summarize in a few statistical parameters the salient biophysical properties of an inter-wired neuronal network. Their formalism normally incorporates different types of neurons and synapses along with their topological organization. MFs are crucial to efficiently implement the computational modules of large-scale models of brain function, maintaining the specificity of local cortical microcircuits. While MFs have been generated for the isocortex, they are still missing for other parts of the brain. Here we have designed and simulated a multi-layer MF of the cerebellar microcircuit (including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells) and validated it against experimental data and the corresponding spiking neural network (SNN) microcircuit model. The cerebellar MF was built using a system of equations, where properties of neuronal populations and topological parameters are embedded in inter-dependent transfer functions. The model time constant was optimised using local field potentials recorded experimentally from acute mouse cerebellar slices as a template. The MF reproduced the average dynamics of different neuronal populations in response to various input patterns and predicted the modulation of the Purkinje Cells firing depending on cortical plasticity, which drives learning in associative tasks, and the level of feedforward inhibition. The cerebellar MF provides a computationally efficient tool for future investigations of the causal relationship between microscopic neuronal properties and ensemble brain activity in virtual brain models addressing both physiological and pathological conditions

    Aberrant olfactory network functional connectivity in people with olfactory dysfunction following COVID-19 infection: an exploratory, observational study

    Get PDF
    BACKGROUND: Olfactory impairments and anosmia from COVID-19 infection typically resolve within 2-4 weeks, although in some cases, symptoms persist longer. COVID-19-related anosmia is associated with olfactory bulb atrophy, however, the impact on cortical structures is relatively unknown, particularly in those with long-term symptoms. METHODS: In this exploratory, observational study, we studied individuals who experienced COVID-19-related anosmia, with or without recovered sense of smell, and compared against individuals with no prior COVID-19 infection (confirmed by antibody testing, all vaccine naïve). MRI Imaging was carried out between the 15th July and 17th November 2020 at the Queen Square House Clinical Scanning Facility, UCL, United Kingdom. Using functional magnetic resonance imaging (fMRI) and structural imaging, we assessed differences in functional connectivity (FC) between olfactory regions, whole brain grey matter (GM) cerebral blood flow (CBF) and GM density. FINDINGS: Individuals with anosmia showed increased FC between the left orbitofrontal cortex (OFC), visual association cortex and cerebellum and FC reductions between the right OFC and dorsal anterior cingulate cortex compared to those with no prior COVID-19 infection (p < 0.05, from whole brain statistical parametric map analysis). Individuals with anosmia also showed greater CBF in the left insula, hippocampus and ventral posterior cingulate when compared to those with resolved anosmia (p < 0.05, from whole brain statistical parametric map analysis). INTERPRETATION: This work describes, for the first time to our knowledge, functional differences within olfactory areas and regions involved in sensory processing and cognitive functioning. This work identifies key areas for further research and potential target sites for therapeutic strategies. FUNDING: This study was funded by the National Institute for Health and Care Research and supported by the Queen Square Scanner business case

    Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths

    Get PDF
    Background: Acceleration of chronic diseases, particularly cardiovascular disease, may increase long-term mortality after community-acquired pneumonia (CAP), but underlying mechanisms are unknown. Persistence of the prothrombotic state that occurs during an acute infection may increase risk of subsequent atherothrombosis in patients with pre-existing cardiovascular disease and increase subsequent risk of death. We hypothesized that circulating hemostasis markers activated during CAP persist at hospital discharge, when patients appear to have recovered clinically, and are associated with higher mortality, particularly due to cardiovascular causes. Methods: In a cohort of survivors of CAP hospitalization from 28 US sites, we measured D-Dimer, thrombin-antithrombin complexes [TAT], Factor IX, antithrombin, and plasminogen activator inhibitor-1 at hospital discharge, and determined 1-year all-cause and cardiovascular mortality. Results: Of 893 subjects, most did not have severe pneumonia (70.6% never developed severe sepsis) and only 13.4% required intensive care unit admission. At discharge, 88.4% of subjects had normal vital signs and appeared to have clinically recovered. D-dimer and TAT levels were elevated at discharge in 78.8% and 30.1% of all subjects, and in 51.3% and 25.3% of those without severe sepsis. Higher D-dimer and TAT levels were associated with higher risk of all-cause mortality (range of hazard ratios were 1.66-1.17, p = 0.0001 and 1.46-1.04, p = 0.001 after adjusting for demographics and comorbid illnesses) and cardiovascular mortality (p = 0.009 and 0.003 in competing risk analyses). Conclusions: Elevations of TAT and D-dimer levels are common at hospital discharge in patients who appeared to have recovered clinically from pneumonia and are associated with higher risk of subsequent deaths, particularly due to cardiovascular disease. © 2011 Yende et al

    Virtual brain simulations reveal network-specific parameters in neurodegenerative dementias

    Get PDF
    INTRODUCTION: Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling, by exploiting structural and functional magnetic resonance imaging (MRI), yields mesoscopic parameters of connectivity and synaptic transmission. METHODS: We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer's disease (AD) and frontotemporal dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel in vivo pathological hallmarks. RESULTS: The pattern of simulated parameter differed between AD and FTD, shedding light on disease-specific alterations in brain networks. Individual subjects displayed subtle differences in network parameter patterns that significantly correlated with their individual neuropsychological, clinical, and pharmacological profiles. DISCUSSION: These TVB simulations, by informing about a new personalized set of networks parameters, open new perspectives for understanding dementias mechanisms and design personalized therapeutic approaches

    Search for CP violation in D0 and D+ decays

    Get PDF
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    A Study of D0 --> K0(S) K0(S) X Decay Channels

    Full text link
    Using data from the FOCUS experiment (FNAL-E831), we report on the decay of D0D^0 mesons into final states containing more than one KS0K^0_S. We present evidence for two Cabibbo favored decay modes, D0KS0KS0Kπ+D^0\to K^0_SK^0_S K^- \pi^+ and D0KS0KS0K+πD^0\to K^0_SK^0_S K^+ \pi^-, and measure their combined branching fraction relative to D0Kˉ0π+πD^0\to \bar{K} ^0\pi^+\pi^- to be Γ(D0KS0KS0K±π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^{\pm}\pi^{\mp})}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0106 ±\pm 0.0019 ±\pm 0.0010. Further, we report new measurements of Γ(D0KS0KS0KS0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_SK^0_S)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0179 ±\pm 0.0027 ±\pm 0.0026, Γ(D0K0Kˉ0)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0\bar{K} ^0)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0144 ±\pm 0.0032 ±\pm 0.0016, and Γ(D0KS0KS0π+π)Γ(D0Kˉ0π+π)\frac{\Gamma(D^0\to K^0_SK^0_S\pi^+\pi^-)}{\Gamma(D^0\to \bar{K} ^0\pi^+\pi^-)} = 0.0208 ±\pm 0.0035 ±\pm 0.0021 where the first error is statistical and the second is systematic.Comment: 11 pages, 3 figures, typos correcte

    Detection of Emerging and Re-Emerging Pathogens in Surface Waters Close to an Urban Area

    Get PDF
    Current knowledge about the spread of pathogens in aquatic environments is scarce probably because bacteria, viruses, algae and their toxins tend to occur at low concentrations in water, making them very difficult to measure directly. The purpose of this study was the development and validation of tools to detect pathogens in freshwater systems close to an urban area. In order to evaluate anthropogenic impacts on water microbiological quality, a phylogenetic microarray was developed in the context of the EU project µAQUA to detect simultaneously numerous pathogens and applied to samples from two different locations close to an urban area located upstream and downstream of Rome in the Tiber River. Furthermore, human enteric viruses were also detected. Fifty liters of water were collected and concentrated using a hollow-fiber ultrafiltration approach. The resultant concentrate was further size-fractionated through a series of decreasing pore size filters. RNA was extracted from pooled filters and hybridized to the newly designed microarray to detect pathogenic bacteria, protozoa and toxic cyanobacteria. Diatoms as indicators of the water quality status, were also included in the microarray to evaluate water quality. The microarray results gave positive signals for bacteria, diatoms, cyanobacteria and protozoa. Cross validation of the microarray was performed using standard microbiological methods for the bacteria. The presence of oral-fecal transmitted human enteric-viruses were detected using q-PCR. Significant concentrations of Salmonella, Clostridium, Campylobacter and Staphylococcus as well as Hepatitis E Virus (HEV), noroviruses GI (NoGGI) and GII (NoGII) and human adenovirus 41 (ADV 41) were found in the Mezzocammino site, whereas lower concentrations of other bacteria and only the ADV41 virus was recovered at the Castel Giubileo site. This study revealed that the pollution level in the Tiber River was considerably higher downstream rather than upstream of Rome and the downstream location was contaminated by emerging and re-emerging pathogens

    Surgical Mask to Prevent Influenza Transmission in Households: A Cluster Randomized Trial

    Get PDF
    Facemasks and respirators have been stockpiled during pandemic preparedness. However, data on their effectiveness for limiting transmission are scarce. We evaluated the effectiveness of facemask use by index cases for limiting influenza transmission by large droplets produced during coughing in households.A cluster randomized intervention trial was conducted in France during the 2008-2009 influenza season. Households were recruited during a medical visit of a household member with a positive rapid influenza A test and symptoms lasting less than 48 hours. Households were randomized either to the mask or control group for 7 days. In the intervention arm, the index case had to wear a surgical mask from the medical visit and for a period of 5 days. The trial was initially intended to include 372 households but was prematurely interrupted after the inclusion of 105 households (306 contacts) following the advice of an independent steering committee. We used generalized estimating equations to test the association between the intervention and the proportion of household contacts who developed an influenza-like illness during the 7 days following the inclusion. Influenza-like illness was reported in 24/148 (16.2%) of the contacts in the intervention arm and in 25/158 (15.8%) of the contacts in the control arm and the difference between arms was 0.40% (95%CI: -10% to 11%, P = 1.00). We observed a good adherence to the intervention. In various sensitivity analyses, we did not identify any trend in the results suggesting effectiveness of facemasks.This study should be interpreted with caution since the lack of statistical power prevents us to draw formal conclusion regarding effectiveness of facemasks in the context of a seasonal epidemic.clinicaltrials.gov NCT00774774
    corecore