99 research outputs found

    Application of the MST clustering to the high energy gamma-ray sky. I - New possible detection of high-energy gamma-ray emission associated with BL Lac objects

    Get PDF
    In this paper we show an application of the Minimum Spanning Tree (MST) clustering method to the high-energy gamma-ray sky observed at energies higher than 10 GeV in 6.3 years by the Fermi-Large Area Telescope. We report the detection of 19 new high-energy gamma-ray clusters with good selection parameters whose centroid coordinates were found matching the positions of known BL Lac objects in the 5th Edition of the Roma-BZCAT catalogue. A brief summary of the properties of these sources is presented.Comment: 11 pages, 7 figures. Accepted for publication in Astrophysics & Space Scienc

    An ALMA view of 11 dusty star-forming galaxies at the peak of cosmic star formation history

    Get PDF
    We present the ALMA view of 11 main-sequence dusty star-forming galaxies (DSFGs) (sub-)millimetre selected in the Great Observatories Origins Survey South (GOODS-S) field and spectroscopically confirmed to be at the peak of cosmic star formation history (z ∼2). Our study combines the analysis of galaxy spectral energy distribution with ALMA continuum and CO spectral emission by using ALMA Science Archive products at the highest spatial resolution currently available for our sample (Δθ 1 arcsec). We include galaxy multiband images and photometry (in the optical, radio, and X-rays) to investigate the interlink between dusty, gaseous, and stellar components and the eventual presence of AGN. We use multiband sizes and morphologies to gain an insight on the processes that lead galaxy evolution, e.g. gas condensation, star formation, AGN feedback. The 11 DSFGs are very compact in the (sub-)millimetre (median rALMA = 1.15 kpc), while the optical emission extends to larger radii (median rH/rALMA = 2.05). CO lines reveal the presence of a rotating disc of molecular gas, but we cannot exclude the presence of interactions and/or molecular outflows. Images at higher (spectral and spatial) resolution are needed to disentangle from the possible scenarios. Most of the galaxies are caught in the compaction phase, when gas cools and falls into galaxy centre, fuelling the dusty burst of star formation and the growing nucleus. We expect these DSFGs to be the high-z star-forming counterparts of massive quiescent galaxies. Some features of CO emission in three galaxies are suggestive of forthcoming/ongoing AGN feedback, which is thought to trigger the morphological transition from star-forming discs to early-type galaxies

    The Way of Water: ALMA resolves H2O emission lines in a strongly lensed dusty star-forming galaxy at z \sim 3.1

    Full text link
    We report ALMA high-resolution observations of water emission lines pH2O(202111p-{\rm{H_2O}} (2_{02}-1_{11}), oH2O(321312)o-{\rm{H_2O}} (3_{21}-3_{12}), pH2O(422413)p-{\rm{H_2O}} (4_{22}-4_{13}), in the strongly lensed galaxy HATLASJ113526.2-01460 at redshift z \sim 3.1. From the lensing-reconstructed maps of water emission and line profiles, we infer the general physical properties of the ISM in the molecular clouds where the lines arise. We find that the water vapor lines oH2O(321312)o-{\rm{H_2O}} (3_{21}-3_{12}), pH2O(422413)p-{\rm{H_2O}} (4_{22}-4_{13}) are mainly excited by FIR pumping from dust radiation in a warm and dense environment, with dust temperatures ranging from 70 K to 100\sim 100 K, as suggested by the line ratios. The pH2O(202111)p-{\rm{H_2O}} (2_{02}-1_{11}) line instead, is excited by a complex interplay between FIR pumping and collisional excitation in the dense core of the star-forming region. This scenario is also supported by the detection of the medium-level excitation of CO resulting in the line emission CO (J=8-7). Thanks to the unprecedented high resolution offered by the combination of ALMA capabilities and gravitational lensing, we discern the different phases of the ISM and locate the hot molecular clouds into a physical scale of \sim 500 pc. We discuss the possibility of J1135 hosting an AGN in its accretion phase. Finally, we determine the relation between the water emission lines and the total IR luminosity of J1135, as well as the SFR as a function of water emission intensities, comparing the outcomes to local and high-zz galactic samples from the literature.Comment: 23 pages, 13 figures, to be published in Astrophysical Journa

    A deep 1.4 GHz survey of the J1030 equatorial field: a new window on radio source populations across cosmic time

    Full text link
    We present deep L-Band observations of the equatorial field centered on the z=6.3 SDSS QSO, reaching a 1 sigma sensitivity of ~2.5 uJy at the center of the field. We extracted a catalog of 1489 radio sources down to a flux density of ~12.5 uJy (5 sigma) over a field of view of ~ 30' diameter. We derived the source counts accounting for catalog reliability and completeness, and compared them with others available in the literature. Our source counts are among the deepest available so far, and, overall, are consistent with recent counts' determinations and models. We detected for the first time in the radio band the SDSS J1030+0524 QSO (26 +/- 5 uJy). We derived its optical radio loudness R_O = 0.62 +/- 0.12, which makes it the most radio quiet AGN at z >~ 6 discovered so far and detected at radio wavelengths. We unveiled extended diffuse radio emission associated with the lobes of a bright FRII radio galaxy located close to the center of the J1030 field, which is likely to become the future BCG of a protocluster at z=1.7. The lobes' complex morphology, coupled with the presence of X-ray diffuse emission detected around the FRII galaxy lobes, may point toward an interaction between the radio jets and the external medium. We also investigated the relation between radio and X-ray luminosity for a sample of 243 X-ray-selected objects obtained from 500 ks Chandra observations of the same field, and spanning a wide redshift range (0 ~< z ~< 3). Focused on sources with a spectroscopic redshift and classification, we found that sources hosted by ETG and AGN follow Log(L_R)/Log(L_X) linear correlations with slopes of ~0.6 and ~0.8, respectively. This is interpreted as a likely signature of different efficiency in the accretion process. Finally, we found that most of these sources (>~87%) show a radio-to-X-ray radio loudness R_X < -3.5, classifying these objects as radio quiet.Comment: 18 pages, 15 figures, 5 table. Accepted for publication in A&

    Supermassive Black Holes at High Redshift are Expected to be Obscured by their Massive Host Galaxies' Inter Stellar Medium

    Get PDF
    We combine results from deep ALMA observations of massive (M>1010  MM_*>10^{10}\;M_{\odot}) galaxies at different redshifts to show that the column density of their inter stellar medium (ISM) rapidly increases towards early cosmic epochs. Our analysis includes objects from the ASPECS and ALPINE large programs, as well as individual observations of z6z\sim 6 QSO hosts. When accounting for non-detections and correcting for selection effects, we find that the median surface density of the ISM of the massive galaxy population evolves as (1+z)3.3\sim(1+z)^{3.3}. This means that the ISM column density towards the nucleus of a z>3z>3 galaxy is typically >100>100 times larger than locally, and it may reach values as high as Compton-thick at z6z\gtrsim6. Remarkably, the median ISM column density is of the same order of what is measured from X-ray observations of large AGN samples already at z2z\gtrsim2. We develop a simple analytic model for the spatial distribution of ISM clouds within galaxies, and estimate the total covering factor towards active nuclei when obscuration by ISM clouds on the host scale is added to that of pc-scale circumnuclear material (the so-called 'torus'). The model includes clouds with a distribution of sizes, masses, and surface densities, and also allows for an evolution of the characteristic cloud surface density with redshift, Σc,(1+z)γ\Sigma_{c,*}\propto(1+z)^\gamma. We show that, for γ=2\gamma=2, such a model successfully reproduces the increase of the obscured AGN fraction with redshift that is commonly observed in deep X-ray surveys, both when different absorption thresholds and AGN luminosities are considered. Our results suggest that 80-90\% of supermassive black holes in the early Universe (z>68z>6-8) are hidden to our view, primarily by the ISM in their hosts. [abridged]Comment: 22 pages, 15 figures, accepted for publication in A&

    Multi-Wavelength Study of a Proto-BCG at z = 1.7

    Get PDF
    In this work we performed a spectral energy distribution (SED) analysis in the optical/infrared band of the host galaxy of a proto-brightest cluster galaxy (BCG, NVSS J103023+052426) in a proto-cluster at z = 1.7. We found that it features a vigorous star formation rate (SFR) of {\sim}570 M\mathrm{M_{\odot}}/yr and a stellar mass of M3.7×1011M_{\ast} \sim 3.7 \times 10^{11} M\mathrm{M_{\odot}}; the high corresponding specific SFR = 1.5±0.51.5 \pm 0.5 Gyr1\mathrm{Gyr^{-1}} classifies this object as a starburst galaxy that will deplete its molecular gas reservoir in \sim 3.5×1083.5 \times 10^8 yr. Thus, this system represents a rare example of a proto-BCG caught during the short phase of its major stellar mass assembly. Moreover, we investigated the nature of the host galaxy emission at 3.3 mm. We found that it originates from the cold dust in the interstellar medium, even though a minor non-thermal AGN contribution cannot be completely ruled out. Finally, we studied the polarized emission of the lobes at 1.4 GHz. We unveiled a patchy structure where the polarization fraction increases in the regions in which the total intensity shows a bending morphology; in addition, the magnetic field orientation follows the direction of the bendings. We interpret these features as possible indications of an interaction with the intracluster medium. This strengthens the hypothesis of positive AGN feedback, as inferred in previous studies of this object on the basis of X-ray/mm/radio analysis. In this scenario, the proto-BCG heats the surrounding medium and possibly enhances the SFR in nearby galaxies

    An ALMA view of 11 dusty star-forming galaxies at the peak of cosmic star formation history

    Get PDF
    We present the ALMA view of 11 main-sequence dusty star-forming galaxies (DSFGs) (sub-)millimetre selected in the Great Observatories Origins Survey South (GOODS-S) field and spectroscopically confirmed to be at the peak of cosmic star formation history (z ~ 2). Our study combines the analysis of galaxy spectral energy distribution with ALMA continuum and CO spectral emission by using ALMA Science Archive products at the highest spatial resolution currently available for our sample (Δθ ≲ 1 arcsec). We include galaxy multiband images and photometry (in the optical, radio, and X-rays) to investigate the interlink between dusty, gaseous, and stellar components and the eventual presence of AGN. We use multiband sizes and morphologies to gain an insight on the processes that lead galaxy evolution, e.g. gas condensation, star formation, AGN feedback. The 11 DSFGs are very compact in the (sub-)millimetre (median rALMA = 1.15 kpc), while the optical emission extends to larger radii (median rH/rALMA = 2.05). CO lines reveal the presence of a rotating disc of molecular gas, but we cannot exclude the presence of interactions and/or molecular outflows. Images at higher (spectral and spatial) resolution are needed to disentangle from the possible scenarios. Most of the galaxies are caught in the compaction phase, when gas cools and falls into galaxy centre, fuelling the dusty burst of star formation and the growing nucleus. We expect these DSFGs to be the high-z star-forming counterparts of massive quiescent galaxies. Some features of CO emission in three galaxies are suggestive of forthcoming/ongoing AGN feedback, which is thought to trigger the morphological transition from star-forming discs to early-type galaxies
    corecore