680 research outputs found

    Disk evolution in the Ori OB1 association

    Full text link
    We analyze multi-band photometry of a subsample of low mass stars in the associations Ori OB1a and 1b discovered during the CIDA Orion Variability Survey, which have ages of 7 - 10 Myr and 3 - 5 Myr, respectively. We obtained UBVRcIc photometry at Mt. Hopkins for 6 Classical T Tauri stars (CTTS) and 26 Weak T Tauri stars (WTTS) in Ori OB1a, and for 21 CTTS and 2 WTTS in Ori OB1b. We also obtained L band photometry for 14 CTTS at Mt. Hopkins, and 10um and 18um photometry with OSCIR at Gemini for 6 CTTS; of these, all 6 were detected at 10um while only one was detected at 18um. We estimate mass accretion rates from the excess luminosity at U, and find that they are consistent with determinations for a number of other associations, with or without high mass star formation. The observed decrease of mass accretion rate with age is qualitatively consistent with predictions of viscous evolution of accretion disks. We find an overall decrease of disk emission from Taurus to Ori OB1b to Ori OB1a. This decrease implies that significant grain growth and settling towards the midplane has taken place in the inner disks of Ori OB1. We compare the SED of the star detected at both 10um and 18um with disk models for similar stellar and accretion parameters. We find that the low <= 18 um fluxes of this Ori OB1b star cannot be due to the smaller disk radius expected from viscous evolution in the presence of the FUV radiation fields from the OB stars in the association. Instead, we find that the disk of this star is essentially a flat disk, with little if any flaring, indicating a a significant degree of dust settling towards the midplane, as expected from dust evolution in protoplanetary disks.Comment: 35 pages, 11 figures, to appear in the Astronomical Journal. Full resolution figures in http://www.cida.ve/~briceno/publications

    The Effects of UV Continuum and Lyman alpha Radiation on the Chemical Equilibrium of T Tauri Disks

    Full text link
    We show in this Letter that the spectral details of the FUV radiation fields have a large impact on the chemistry of protoplanetary disks surrounding T Tauri stars. We show that the strength of a realistic stellar FUV field is significantly lower than typically assumed in chemical calculations and that the radiation field is dominated by strong line emission, most notably Lyman alpha radiation. The effects of the strong Lyman alpha emission on the chemical equilibrium in protoplanetary disks has previously been unrecognized. We discuss the impact of this radiation on molecular observations in the context of a radiative transfer model that includes both direct attenuation and scattering. In particular, Lyman alpha radiation will directly dissociate water vapor and may contribute to the observed enhancements of CN/HCN in disks.Comment: 14 pages, 4 figures, accepted by ApJ Letter

    Forming Planetesimals by Gravitational Instability: II. How Dust Settles to its Marginally Stable State

    Full text link
    Dust at the midplane of a circumstellar disk can become gravitationally unstable and fragment into planetesimals if the local dust-to-gas density ratio mu is sufficiently high. We simulate how dust settles in passive disks and ask how high mu can become. We settle the dust using a 1D code and test for dynamical stability using a 3D shearing box code. This scheme allows us to explore the behavior of small particles having short but non-zero stopping times in gas: 0 < t_stop << the orbital period. The streaming instability is thereby filtered out. Dust settles until shearing instabilities in the edges of the dust layer threaten to overturn the entire layer. In this state of marginal stability, mu=2.9 for a disk whose bulk (height-integrated) metallicity is solar. For a disk whose bulk metallicity is 4x solar, mu reaches 26.4. These maximum values of mu, which depend on the background radial pressure gradient, are so large that gravitational instability of small particles is viable in disks whose bulk metallicities are just a few (<4) times solar. Earlier studies assumed that dust settles until the Richardson number Ri is spatially constant. Our simulations are free of this assumption but provide support for it within the dust layer's edges, with the proviso that Ri increases with bulk metallicity in the same way that we found in Paper I. Only modest enhancements in bulk metallicity are needed to spawn planetesimals directly from small particles.Comment: Accepted to Ap

    Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk

    Full text link
    Using the Hubble Space Telescope, the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory, and the Spitzer Space Telescope, we have performed deep imaging from 0.8 to 8 um of the southern subcluster in the Chamaeleon I star-forming region. In these data, we have discovered an object, Cha 110913-773444, whose colors and magnitudes are indicative of a very low-mass brown dwarf with a circumstellar disk. In a near-infrared spectrum of this source obtained with the Gemini Near-Infrared Spectrograph, the presence of strong steam absorption confirms its late-type nature (>=M9.5) while the shapes of the H- and K-band continua and the strengths of the Na I and K I lines demonstrate that it is a young, pre-main-sequence object rather than a field dwarf. A comparison of the bolometric luminosity of Cha 110913-773444 to the luminosities predicted by the evolutionary models of Chabrier and Baraffe and Burrows and coworkers indicates a mass of 8+7/-3 M_Jup, placing it fully within the mass range observed for extrasolar planetary companions (M<=15 M_Jup). The spectral energy distribution of this object exhibits mid-infrared excess emission at >5 um, which we have successfully modeled in terms of an irradiated viscous accretion disk with M'<=10e-12 M_sun/year. Cha 110913-773444 is now the least massive brown dwarf observed to have a circumstellar disk, and indeed is one of the least massive free-floating objects found to date. These results demonstrate that the raw materials for planet formation exist around free-floating planetary-mass bodies.Comment: 5 pages, accepted to Astrophysical Journal Letter

    The complete catalogue of gamma-ray bursts observed by the Wide Field Cameras on board BeppoSAX

    Full text link
    We present the complete on-line catalogue of gamma-ray bursts observed by the two Wide Field Cameras on board \sax in the period 1996-2002. Our aim is to provide the community with the largest published data set of GRB's prompt emission X-ray light curves and other useful data. This catalogue (BS-GRBWFCcat) contains data on 77 bursts and a collection of the X-ray light curves of 56 GRB discovered or noticed shortly after the event and of other additional bursts detected in subsequent searches. Light curves are given in the three X-ray energy bands (2-5, 5-10, 10-26 keV). The catalogue can be accessed from the home web page of the ASI Science Data Center-ASDC (http://www.asdc.asi.it)Comment: 4 pages, 3 figure

    Impact of grain evolution on the chemical structure of protoplanetary disks

    Full text link
    We study the impact of dust evolution in a protoplanetary disk around a T Tauri star on the disk chemical composition. For the first time we utilize a comprehensive model of dust evolution which includes growth, fragmentation and sedimentation. Specific attention is paid to the influence of grain evolution on the penetration of the UV field in the disk. A chemical model that includes a comprehensive set of gas phase and grain surface chemical reactions is used to simulate the chemical structure of the disk. The main effect of the grain evolution on the disk chemical composition comes from sedimentation, and, to a lesser degree, from the reduction of the total grain surface area. The net effect of grain growth is suppressed by the fragmentation process which maintains a population of small grains, dominating the total grain surface area. We consider three models of dust properties. In model GS both growth and sedimentation are taken into account. In models A5 and A4 all grains are assumed to have the same size (10(-5) cm and 10(-4) cm, respectively) with constant gas-to-dust mass ratio of 100. Like in previous studies, the "three-layer" pattern (midplane, molecular layer, hot atmosphere) in the disk chemical structure is preserved in all models, but shifted closer to the midplane in models with increased grain size (GS and A4). Unlike other similar studies, we find that in models GS and A4 column densities of most gas-phase species are enhanced by 1-3 orders of magnitude relative to those in a model with pristine dust (A5), while column densities of their surface counterparts are decreased. We show that column densities of certain species, like C2H, HC(2n+1)N (n=0-3), H2O and some other molecules, as well as the C2H2/HCN abundance ratio which are accessible with Herschel and ALMA can be used as observational tracers of early stages of the grain evolution process in protoplanetary disks.Comment: 50 pages, 4 tables, 11 figures, accepted to the Ap

    Spitzer observations of the Orion OB1 association: disk census in the low mass stars

    Full text link
    We present new Spitzer Space Telescope observations of two fields in the Orion OB1 association. We report here IRAC/MIPS observations for 115 confirmed members and 41 photometric candidates of the ~10 Myr 25 Orionis aggregate in the OB1a subassociation, and 106 confirmed members and 65 photometric candidates of the 5 Myr region located in the OB1b subassociation. The 25 Orionis aggregate shows a disk frequency of 6% while the field in the OB1b subassociation shows a disk frequency of 13%. Combining IRAC, MIPS and 2MASS photometry we place stars bearing disks in several classes: stars with optically thick disks (class II systems), stars with an inner transitional disks (transitional disk candidates) and stars with "evolved disks"; the last exhibit smaller IRAC/MIPS excesses than class II systems. In all, we identify 1 transitional disk candidate in the 25 Orionis aggregate and 3 in the OB1b field; this represents ~10% of the disk bearing stars, indicating that the transitional disk phase can be relatively fast. We find that the frequency of disks is a function of the stellar mass, suggesting a maximum around stars with spectral type M0. Comparing the infrared excess in the IRAC bands among several stellar groups we find that inner disk emission decays with stellar age, showing a correlation with the respective disk frequencies. The disk emission at the IRAC and MIPS bands in several stellar groups indicates that disk dissipation takes place faster in the inner region of the disks. Comparison with models of irradiated accretion disks, computed with several degrees of settling, suggests that the decrease in the overall accretion rate observed in young stellar groups is not sufficient to explain the weak disk emission observed in the IRAC bands for disk bearing stars with ages 5 Myr or older.Comment: Accepted in the Astrophysical Journa

    Probing the Dust and Gas in the Transitional Disk of CS Cha with Spitzer

    Full text link
    Here we present the Spitzer IRS spectrum of CS Cha, a member of the ~2 Myr old Chamaeleon star-forming region, which reveals an optically thick circumstellar disk truncated at ~43 AU, the largest hole modeled in a transitional disk to date. Within this inner hole, ~5x10^-5 lunar masses of dust are located in a small optically thin inner region which extends from 0.1 to 1 AU. In addition, the disk of CS Cha has bigger grain sizes and more settling than the previously modeled transitional disks DM Tau, GM Aur, and CoKu Tau/4, suggesting that CS Cha is in a more advanced state of dust evolution. The Spitzer IRS spectrum also shows [Ne II] 12.81 micron fine-structure emission with a luminosity of 1.3x10^29 ergs s^-1, indicating that optically thin gas is present in this ~43 AU hole, in agreement with H_alpha measurements and a UV excess which indicate that CS Cha is still accreting 1.2x10^-8 M_sun yr^-1. We do not find a correlation of the [Ne II] flux with L_X, however, there is a possible correlation with mass accretion rate, which if confirmed would suggest that EUV fluxes due to accretion are the main agent for formation of the [Ne II] line.Comment: accepted to ApJ Letter
    • …
    corecore