879 research outputs found

    Temperature-dependent expression of a collagen splicing defect in the fibroblasts of a patient with Ehlers-Danlos syndrome type VII.

    Get PDF
    Abstract In this article we report the characterization of the molecular lesion in a patient with Ehlers-Danlos syndrome Type VII and provide evidence that a de novo substitution of the last nucleotide of exon 6 in one allele of the pro-alpha 2(I) collagen gene produces normally spliced mRNA and transcripts from which exon 6 sequences have been outspliced as well. Unexpectedly, the expression of the alternative splicing was found to be temperature-dependent, for missplicing in cellula is effectively abolished at 31 degrees C and gradually increases to 100% at 39 degrees C. In contrast, in a similar patient harboring a substitution in the obligatory GT dinucleotide of the 5' splice site of intron 6, complete outsplicing of exon 6 sequences was found at all temperatures

    Models of the Structure and Evolution of Protoplanetary Disks

    Full text link
    We review advances in the modeling of protoplanetary disks. This review will focus on the regions of the disk beyond the dust sublimation radius, i.e. beyond 0.1 - 1 AU, depending on the stellar luminosity. We will be mostly concerned with models that aim to fit spectra of the dust continuum or gas lines, and derive physical parameters from these fits. For optically thick disks, these parameters include the accretion rate through the disk onto the star, the geometry of the disk, the dust properties, the surface chemistry and the thermal balance of the gas. For the latter we are mostly concerned with the upper layers of the disk, where the gas and dust temperature decouple and a photoevaporative flow may originate. We also briefly discuss optically thin disks, focusing mainly on the gas, not the dust. The evolution of these disks is dominated by accretion, viscous spreading, photoevaporation, and dust settling and coagulation. The density and temperature structure arising from the surface layer models provide input to models of photoevaporation, which occurs largely in the outer disk. We discuss the consequences of photoevaporation on disk evolution and planet formation.Comment: Review chapter in "Protostars and Planets V

    Structural variations in metal complexes of a tertiary α-hydroxyoxime

    Get PDF
    Despite the long term interest in hydroxyoximes as metal ion extractants, there is a lack of information on the possible coordination modes these ligands can assume, particularly in concert with a co-ligand. This is pertinent to the use of these extractants in synergistic systems, where a combination of extractants can achieve commercially useful results. We report here the structures of some metal complexes (M = Mn, Co, Ni, Cu, and Zn) with (1-hydroxycyclohexyl)-phenyl ketone oxime. The results demonstrate that this ligand can support complexes ranging from mononuclear to trinuclear, in association with anionic and neutral co-ligands in some cases. While these results have been obtained in the solid state, they illustrate a range of possible species that may be formed in extractant solutions

    Unveiling the Structure of Pre-Transitional Disks

    Full text link
    In the past few years, several disks with inner holes that are empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of "pre-transitional disks" with gaps; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thick inner disk. Here we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in Taurus as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also model the broad-band SEDs of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, considering the finite size of the star. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.Comment: Accepted for publication in ApJ on May 10, 2010; 29 page

    Discovery of a Planetary-Mass Brown Dwarf with a Circumstellar Disk

    Full text link
    Using the Hubble Space Telescope, the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory, and the Spitzer Space Telescope, we have performed deep imaging from 0.8 to 8 um of the southern subcluster in the Chamaeleon I star-forming region. In these data, we have discovered an object, Cha 110913-773444, whose colors and magnitudes are indicative of a very low-mass brown dwarf with a circumstellar disk. In a near-infrared spectrum of this source obtained with the Gemini Near-Infrared Spectrograph, the presence of strong steam absorption confirms its late-type nature (>=M9.5) while the shapes of the H- and K-band continua and the strengths of the Na I and K I lines demonstrate that it is a young, pre-main-sequence object rather than a field dwarf. A comparison of the bolometric luminosity of Cha 110913-773444 to the luminosities predicted by the evolutionary models of Chabrier and Baraffe and Burrows and coworkers indicates a mass of 8+7/-3 M_Jup, placing it fully within the mass range observed for extrasolar planetary companions (M<=15 M_Jup). The spectral energy distribution of this object exhibits mid-infrared excess emission at >5 um, which we have successfully modeled in terms of an irradiated viscous accretion disk with M'<=10e-12 M_sun/year. Cha 110913-773444 is now the least massive brown dwarf observed to have a circumstellar disk, and indeed is one of the least massive free-floating objects found to date. These results demonstrate that the raw materials for planet formation exist around free-floating planetary-mass bodies.Comment: 5 pages, accepted to Astrophysical Journal Letter

    Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks

    Get PDF
    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS) 5-7.5 micron spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other six of the thirteen stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 microns, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.Comment: 33 pages, 9 figures, to appear in the 20 August, 2014, V791 - 2 issue of the Astrophysical Journa
    • …
    corecore