28 research outputs found

    Evidence for Myelin Sheath Remodeling in the CNS Revealed by In Vivo Imaging

    Get PDF
    The length of myelin sheaths affects conduction speed along axons and information propagation. It has recently become clear that myelin may be adaptively modified to modulate circuit function, implying that length remodeling of myelin sheaths should occur. However, direct evidence for such events is lacking. We have investigated how myelination patterns are formed, maintained, and remodeled using long-term imaging and myelin ablation in zebrafish. We demonstrate that length differences between myelin sheaths are established by rapid and variable growth within 3 days after their formation, independently of their time of formation, and even along discontinuously myelinated axons. Afterward, sheaths continue extending at similar rates to compensate for overall animal growth. In consequence, once axon myelination patterns are established, they are maintained over long periods of time. We tested whether mature myelin sheaths can remodel by removing individual sheaths from single axons by targeted ablation. Remarkably, extensive changes in sheath length and number occurred, which frequently restored the original myelination pattern. Our results show that axons can control myelin growth and remodeling, and we provide evidence for a homeostatic control of axon myelination patterns by maintenance and remodeling of myelin sheath length, with implications for circuit development, function, and repair

    Systemic loss of Sarm1 protects Schwann cells from chemotoxicity by delaying axon degeneration

    Get PDF
    Protecting the nervous system from chronic effects of physical and chemical stress is a pressing clinical challenge. The obligate pro-degenerative protein Sarm1 is essential for Wallerian axon degeneration. Thus, blocking Sarm1 function is emerging as a promising neuroprotective strategy with therapeutic relevance. Yet, the conditions that will most benefit from inhibiting Sarm1 remain undefined. Here we combine genome engineering, pharmacology and high-resolution intravital videmicroscopy in zebrafish to show that genetic elimination of Sarm1 increases Schwann-cell resistance to toxicity by diverse chemotherapeutic agents after axonal injury. Synthetic degradation of Sarm1-deficient axons reversed this effect, suggesting that glioprotection is a non-autonomous effect of delayed axon degeneration. Moreover, loss of Sarm1 does not affect macrophage recruitment to nerve-wound microenvironment, injury resolution, or neural-circuit repair. These findings anticipate that interventions aimed at inhibiting Sarm1 can counter heightened glial vulnerability to chemical stressors and may be an effective strategy to reduce chronic consequences of neurotrauma.Tian et al. showed that systemic elimination of Sarm1 in zebrafish increases Schwann-cell resistance to chemotherapeutics and protects axons from Wallerian degeneration. They use genetics, pharmacology, and high resolution intravital videomicroscopy to study Sarm1 in vivo

    Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling

    Get PDF
    Many oligodendrocyte precursor cells (OPCs) do not differentiate to form myelin, suggesting additional roles of this cell population. The zebrafish optic tectum contains OPCs in regions devoid of myelin. Elimination of these OPCs impaired precise control of retinal ganglion cell axon arbor size during formation and maturation of retinotectal connectivity and degraded functional processing of visual stimuli. Therefore, OPCs fine-tune neural circuits independently of their canonical role to make myelin

    Clusters of neuronal neurofascin prefigure the position of a subset of nodes of Ranvier along individual central nervous system axons in vivo

    Get PDF
    The spacing of nodes of Ranvier crucially affects conduction properties along myelinated axons. It is assumed that node position is primarily driven by growing myelin sheaths. Here, we reveal an additional mechanism of node positioning that is driven by the axon. Through longitudinal live imaging of node formation dynamics in the zebrafish central nervous system, we show that stable clusters of the cell adhesion molecule neurofascin a can accumulate at specific sites along axons prior to myelination. While some of these clusters are pushed into future node position by extending myelin sheaths, others are not and thus prefigure the position of where a mature node forms. Animals that lack full-length neurofascin a show increased internodal distances and less regular nodal spacing along single axons. Together, our data reveal the existence of an axonal mechanism to position nodes of Ranvier that does not depend on regulation by myelin sheath growth

    Regulatory mechanisms that mediate tenascin C-dependent inhibition of oligodendrocyte precursor differentiation

    Get PDF
    Here, we present mechanisms for the inhibition of oligodendendrocyte precursor cell (OPC) differentiation, a biological function of neural extracellular matrix (ECM). The differentiation of oligodendrocytes is orchestrated by a complex set of stimuli. In the present study, we investigated the signaling pathway elicited by the ECM glycoprotein tenascin C (Tnc). Tnc substrates inhibit myelin basic protein (MBP) expression of cultured rat oligodendrocytes, and, conversely, we found that the emergence of MBP expression is accelerated in forebrains of Tnc-deficient mice. Mechanistically, Tnc interfered with phosphorylation of Akt, which in turn reduced MBP expression. At the cell surface, Tnc associates with lipid rafts in oligodendrocyte membranes, together with the cell adhesion molecule contactin (Cntn1) and the Src family kinase (SFK) Fyn. Depletion of Cntn1 in OPCs by small interfering RNAs (siRNAs) abolished the Tnc-dependent inhibition of oligodendrocyte differentiation, while Tnc exposure impeded the activation of the tyrosine kinase Fyn by Cntn1. Concomitant with oligodendrocyte differentiation, Tnc antagonized the expression of the signaling adaptor and RNA-binding molecule Sam68. siRNA-mediated knockdown or overexpression of Sam68 delayed or accelerated oligodendrocyte differentiation, respectively. Inhibition of oligodendrocyte differentiation with the SFK inhibitor PP2 could be rescued by Sam68 overexpression, which may indicate a regulatory role for Sam68 downstream of Fyn. Our study therefore uncovers the first signaling pathways that underlie Tnc-induced, ECM-dependent maintenance of the immature state of OPCs

    Proteome Profile of Myelin in the Zebrafish Brain

    Get PDF
    The velocity of nerve conduction along vertebrate axons depends on their ensheathment with myelin. Myelin membranes comprise specialized proteins well characterized in mice. Much less is known about the protein composition of myelin in non-mammalian species. Here, we assess the proteome of myelin biochemically purified from the brains of adult zebrafish (Danio rerio), considering its increasing popularity as model organism for myelin biology. Combining gel-based and gel-free proteomic approaches, we identified > 1,000 proteins in purified zebrafish myelin, including all known constituents. By mass spectrometric quantification, the predominant Ig-CAM myelin protein zero (MPZ/P0), myelin basic protein (MBP), and the short-chain dehydrogenase 36K constitute 12%, 8%, and 6% of the total myelin protein, respectively. Comparison with previously established mRNA-abundance profiles shows that expression of many myelin-related transcripts coincides with the maturation of zebrafish oligodendrocytes. Zebrafish myelin comprises several proteins that are not present in mice, including 36K, CLDNK, and ZWI. However, a surprisingly large number of ortholog proteins is present in myelin of both species, indicating partial evolutionary preservation of its constituents. Yet, the relative abundance of CNS myelin proteins can differ markedly as exemplified by the complement inhibitor CD59 that constitutes 5% of the total zebrafish myelin protein but is a low-abundant myelin component in mice. Using novel transgenic reporter constructs and cryo-immuno electron microscopy, we confirm the incorporation of CD59 into myelin sheaths. These data provide the first proteome resource of zebrafish CNS myelin and demonstrate both similarities and heterogeneity of myelin composition between teleost fish and rodents

    Myelination of neuronal cell bodies when myelin supply exceeds axonal demand

    Get PDF
    The correct targeting of myelin is essential for nervous system formation and function. Oligodendrocytes in the CNS myelinate some axons, but not others, and do not myelinate structures including cell bodies and dendrites [1]. Recent studies indicate that extrinsic signals, such as neuronal activity [2, 3] and cell adhesion molecules [4], can bias myelination toward some axons and away from cell bodies and dendrites, indicating that, in vivo, neuronal and axonal cues regulate myelin targeting. In vitro, however, oligodendrocytes have an intrinsic propensity to myelinate [5-7] and can promiscuously wrap inert synthetic structures resembling neuronal processes [8, 9] or cell bodies [4]. A current therapeutic goal for the treatment of demyelinating diseases is to greatly promote oligodendrogenesis [10-13]; thus, it is important to test how accurately extrinsic signals regulate the oligodendrocyte's intrinsic program of myelination in vivo. Here, we test the hypothesis that neurons regulate myelination with sufficient stringency to always ensure correct targeting. Surprisingly, however, we find that myelin targeting in vivo is not very stringent and that mistargeting occurs readily when oligodendrocyte and myelin supply exceed axonal demand. We find that myelin is mistargeted to neuronal cell bodies in zebrafish mutants with fewer axons and independently in drug-treated zebrafish with increased oligodendrogenesis. Additionally, by increasing myelin production of oligodendrocytes in zebrafish and mice, we find that excess myelin is also inappropriately targeted to cell bodies. Our results suggest that balancing oligodendrocyte-intrinsic programs of myelin supply with axonal demand is essential for correct myelin targeting in vivo and highlight potential liabilities of strongly promoting oligodendrogenesis

    Individual Oligodendrocytes Have Only a Few Hours in which to Generate New Myelin Sheaths In Vivo

    Get PDF
    The number of myelin sheaths made by individual oligodendrocytes regulates the extent of myelination, which profoundly affects central nervous system function. It remains unknown when, during their life, individual oligodendrocytes can regulate myelin sheath number in vivo. We show, using live imaging in zebrafish, that oligodendrocytes make new myelin sheaths during a period of just 5 hr, with regulation of sheath number after this time limited to occasional retractions. We also show that activation and reduction of Fyn kinase in oligodendrocytes increases and decreases sheath number per cell, respectively. Interestingly, these oligodendrocytes also generate their new myelin sheaths within the same period, despite having vastly different extents of myelination. Our data demonstrate a restricted time window relative to the lifetime of the individual oligodendrocyte, during which myelin sheath formation occurs and the number of sheaths is determined

    Completion of neuronal remodeling prompts myelination along developing motor axon branches

    Get PDF
    Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon–glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch–specific fine-tuning mechanism that locally coordinates axon remodeling and myelination
    corecore