18 research outputs found

    Neurogenesis during Brittle Star Arm Regeneration Is Characterised by a Conserved Set of Key Developmental Genes

    Get PDF
    Neural regeneration is very limited in humans but extremely efficient in echinoderms. The brittle star Amphiura filiformis can regenerate both components of its central nervous system as well as the peripheral system, and understanding the molecular mechanisms underlying this ability is key for evolutionary comparisons not only within the echinoderm group, but also wider within deuterostomes. Here we characterise the neural regeneration of this brittle star using a combination of immunohistochemistry, in situ hybridization and Nanostring nCounter to determine the spatial and temporal expression of evolutionary conserved neural genes. We find that key genes crucial for the embryonic development of the nervous system in sea urchins and other animals are also expressed in the regenerating nervous system of the adult brittle star in a hierarchic and spatio-temporally restricted manner

    Fundamental aspects of arm repair phase in two echinoderm models

    Get PDF
    Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage

    The brittle star genome illuminates the genetic basis of animal appendage regeneration

    Full text link
    Species within nearly all extant animal lineages are capable of regenerating body parts. However, it remains unclear whether the gene expression programme controlling regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms with outstanding regenerative abilities, but investigations into the genetic bases of regeneration in this group have been hindered by the limited genomic resources. Here, we report a chromosome-scale genome assembly for the brittle starAmphiura filiformis.We show that the brittle star genome is the most rearranged amongst echinoderms sequenced to date, featuring a reorganised Hox cluster reminiscent of the rearrangements observed in sea urchins. In addition, we performed an extensive profiling of gene expression during brittle star adult arm regeneration and identified sequential waves of gene expression governing wound healing, proliferation and differentiation. We conducted comparative transcriptomic analyses with other invertebrate and vertebrate models for appendage regeneration and uncovered hundreds of genes with conserved expression dynamics, particularly during the proliferative phase of regeneration. Our findings emphasise the crucial importance of echinoderms to detect long-range expression conservation between vertebrates and classical invertebrate regeneration model systems.Cold Spring Harbor Laborator

    A conserved regulatory program initiates lateral plate mesoderm emergence across chordates

    Get PDF
    Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo

    Laryngeal Electromyography in the Therapeutic Process of Patients with Vocal Fold Immobility or Dysmobility

    No full text
    (1) Background: Laryngeal electromyography (LEMG) plays a key role in classifying the severity of nerve damage and determining the prognosis of the nerve recovery. LEMG is primarily a qualitative study, without a standardized approach to interpretation. The development of qualitative and quantitative analysis would situate LEMG in the gold standard of modern neurolaryngologic diagnostics. The aim of this study was to quantitatively evaluate laryngeal electromyography recorded in patients with vocal fold immobility or dysmobility. (2) Methods: The electromyographic material comprised 84 thyroarytenoid muscles recordings of 42 patients. (3) Results: In our study, we observed significant differences between EMG characteristics of healthy and paralyzed VF. Our study showed that recording laryngeal muscle activity during successive phases of breathing provides additional valuable information. We noticed that the frequency and amplitude of motor unit potentials correlates with the return of vocal fold functionality. (4) Conclusions: Laryngeal EMG guides the clinician on the best course of treatment for the patient. It is therefore important to develop an effective methodology and consensus on the quantitative interpretation of the record. Amplitude and frequency parameters are valuable in predicting neural recovery and in the return of vocal fold mobility

    Additional file 5: of Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution

    No full text
    Details on fuzzy clustering. This file includes the data for Fig. 5. It shows the classification of TFs of A. filiformis and S. purpuratus into the four modes of expression. (XLSX 69 kb

    Additional file 1: of Skeletal regeneration in the brittle star Amphiura filiformis

    No full text
    Additional figures and tables; Contains figures and tables supporting data in the main text. (PDF 151495 kb
    corecore