43 research outputs found

    MicroRNAs-Dependent Regulation of PPARs in Metabolic Diseases and Cancers

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) are a family of ligand-dependent nuclear receptors, which control the transcription of genes involved in energy homeostasis and inflammation and cell proliferation/differentiation. Alterations of PPARs’ expression and/or activity are commonly associated with metabolic disorders occurring with obesity, type 2 diabetes, and fatty liver disease, as well as with inflammation and cancer. Emerging evidence now indicates that microRNAs (miRNAs), a family of small noncoding RNAs, which fine-tune gene expression, play a significant role in the pathophysiological mechanisms regulating the expression and activity of PPARs. Herein, the regulation of PPARs by miRNAs is reviewed in the context of metabolic disorders, inflammation, and cancer. The reciprocal control of miRNAs expression by PPARs, as well as the therapeutic potential of modulating PPAR expression/activity by pharmacological compounds targeting miRNA, is also discussed

    Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them

    The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies

    Get PDF
    It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups

    Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis.

    Get PDF
    The microRNA 21 (miR-21) is upregulated in almost all known human cancers and is considered a highly potent oncogene and potential therapeutic target for cancer treatment. In the liver, miR-21 was reported to promote hepatic steatosis and inflammation, but whether miR-21 also drives hepatocarcinogenesis remains poorly investigated in vivo. Here we show using both carcinogen (Diethylnitrosamine, DEN) or genetically (PTEN deficiency)-induced mouse models of hepatocellular carcinoma (HCC), total or hepatocyte-specific genetic deletion of this microRNA fosters HCC development-contrasting the expected oncogenic role of miR-21. Gene and protein expression analyses of mouse liver tissues further indicate that total or hepatocyte-specific miR-21 deficiency is associated with an increased expression of oncogenes such as Cdc25a, subtle deregulations of the MAPK, HiPPO, and STAT3 signaling pathways, as well as alterations of the inflammatory/immune anti-tumoral responses in the liver. Together, our data show that miR-21 deficiency promotes a pro-tumoral microenvironment, which over time fosters HCC development via pleiotropic and complex mechanisms. These results question the current dogma of miR-21 being a potent oncomiR in the liver and call for cautiousness when considering miR-21 inhibition for therapeutic purposes in HCC

    GDF11 induces mild hepatic fibrosis independent of metabolic health

    Full text link
    Background & aims: Growth Differentiation Factor 11 (GDF11) is an anti-aging factor, yet its role in liver diseases is not established. We evaluated the role of GDF11 in healthy conditions and in the transition from non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH). Results: GDF11 mRNA levels positively correlated with NAFLD activity score and with CPT1, SREBP, PPARγ and Col1A1 mRNA levels, and associated to portal fibrosis, in morbidly obese patients with NAFLD/NASH. GDF11-treated mice showed mildly exacerbated hepatic collagen deposition, accompanied by weight loss and without changes in liver steatosis or inflammation. GDF11 triggered ALK5-dependent SMAD2/3 nuclear translocation and the pro-fibrogenic activation of HSC. Conclusions: GDF11 supplementation promotes mild liver fibrosis. Even considering its beneficial metabolic effects, caution should be taken when considering therapeutics that regulate GDF11. Methods: We analyzed liver biopsies from a cohort of 33 morbidly obese adults with NAFLD/NASH. We determined the correlations in mRNA expression levels between GDF11 and genes involved in NAFLD-to-NASH progression and with pathological features. We also exposed wild type or obese mice with NAFLD to recombinant GDF11 by daily intra-peritoneal injection and monitor the hepatic pathological changes. Finally, we analyzed GDF11-activated signaling pathways in hepatic stellate cells (HSC)

    Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development

    Get PDF
    miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue

    Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development

    Get PDF
    miR-22 is one of the most abundant miRNAs in the liver and alterations of its hepatic expression have been associated with the development of hepatic steatosis and insulin resistance, as well as cancer. However, the pathophysiological roles of miR-22-3p in the deregulated hepatic metabolism with obesity and cancer remains poorly characterized. Herein, we observed that alterations of hepatic miR-22-3p expression with non-alcoholic fatty liver disease (NAFLD) in the context of obesity are not consistent in various human cohorts and animal models in contrast to the well-characterized miR-22-3p downregulation observed in hepatic cancers. To unravel the role of miR-22 in obesity-associated NAFLD, we generated constitutive Mir22 knockout (miR-22KO) mice, which were subsequently rendered obese by feeding with fat-enriched diet. Functional NAFLD- and obesity-associated metabolic parameters were then analyzed. Insights about the role of miR-22 in NAFLD associated with obesity were further obtained through an unbiased proteomic analysis of miR-22KO livers from obese mice. Metabolic processes governed by miR-22 were finally investigated in hepatic transformed cancer cells. Deletion of Mir22 was asymptomatic when mice were bred under standard conditions, except for an onset of glucose intolerance. However, when challenged with a high fat-containing diet, Mir22 deficiency dramatically exacerbated fat mass gain, hepatomegaly, and liver steatosis in mice. Analyses of explanted white adipose tissue revealed increased lipid synthesis, whereas mass spectrometry analysis of the liver proteome indicated that Mir22 deletion promotes hepatic upregulation of key enzymes in glycolysis and lipid uptake. Surprisingly, expression of miR-22-3p in Huh7 hepatic cancer cells triggers, in contrast to our in vivo observations, a clear induction of a Warburg effect with an increased glycolysis and an inhibited mitochondrial respiration. Together, our study indicates that miR-22-3p is a master regulator of the lipid and glucose metabolism with differential effects in specific organs and in transformed hepatic cancer cells, as compared to non-tumoral tissue

    Effets d'inhibiteurs de la cyclooxygénase-2 sur la prolifération et la survie de cellules cancéreuses hématopoïétiques

    No full text
    Cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step in prostaglandin biosynthesis. COX-2 is the inducible isoform, upregulated during inflammation and overexpressed in various cancers. There are evidences of a role for COX-2 in cell proliferation and apoptosis especially in solid tumors, whereas little is known for cancers of hematopoietic origin. In our study, we analyzed the effect of COX-2 inhibitors (nimesulide, NS-398 and celecoxib) on cell proliferation and apoptosis of a panel of leukemic and lymphoblastic cell lines, Hel, Jurkat, K562, K562, Raji and U937. We found that the different inhibitors slow down cell proliferation in the different hematologic cell lines tested. U937 cells appeared as the most sensitive, whereas K562 were the most resistant to this effect. We provide evidence that this modulation corresponds to an accumulation of the cells in G0/G1 paralleled by an early downregulation of c-Myc and the expression of cell type-specific differentiation markers in U937 (CD15) and Hel (CD41a and CD61). In the second part of our study, we investigate the effect of COX-2 inhibitors on apoptosis induced by chemotherapeutic agents in our cell models. We demonstrated that COX-2 inhibitors strongly prevent apoptosis induced by a panel of chemotherapeutic agents. We demonstrated an early prevention of apoptotic signaling, prior to Bax/Bak activation. The preventive effect is associated with an impairment of the ability of chemotherapeutic agents to trigger their apoptogenic stress. Altogether, our results demonstrate an anti-apoptotic effect of COX-2 inhibitors on intrinsic vs. extrinsic apoptosis at early steps of apoptosis commitment. These results suggest cautions in the use of COX-2 inhibitors with chemotherapy. In the third part of our project, we investigated the combination of COX-2 inhibitors with curcumin, a natural product known for its anti-tumor properties. Our findings show that curcumin alone leads to an accumulation of U937 cells in G2/M phase of cell cycle, followed by an induction of apoptosis. However, the pretreatment of U937 cells with celecoxib at non-apoptogenic concentrations, counteracted curcumin-induced apoptosis, thus showing that this combination is not a good anti-cancer strategy in our cell models. The chronic use of COX-2 inhibitors can be associated with severe side effects due to the inhibition of COX-2 enzyme. In the last part of our project, we demonstrated that 2,5 dimethyl-celecoxib (DMC), a structurally analogue of celecoxib, which is not able to inhibit COX-2 activity, induces an inhibition of cell proliferation and an induction of apoptosis in U937 and K562 cells. These effects are stronger than those observed with celecoxib. Thus, this compound demonstrated better anti-tumor properties and may represent a promising therapeutic approach against leukemia. Altogether, our study supports the idea that COX-2 inhibitors display anti-tumor effects in our cell models, but only when administrated alone. The effects observed with DMC suggest that this compound may represent an alternative approach to COX-2 inhibitors in cancer therapy.Les cyclooxygénases (COXs) sont une famille d'enzymes impliquées dans la biosynthèse des prostaglandines. COX-2 est la forme inductible qui est induite pendant l'inflammation et qui est surexprimée dans plusieurs cancers. Plusieurs évidences suggèrent que COX-2 joue un rôle dans la prolifération cellulaire et l'apoptose. Ces évidences concernent surtout les tumeurs solides et les mécanismes impliqués ne sont pas complètement connus et surtout pour les cancers d'origine hématopoïétique. Pour notre étude, nous avons étudié l'effet d'inhibiteurs de COX-2 (nimésulide, NS-398 et célécoxib) sur la prolifération et l'apoptose de lignées cellulaires leucémiques et lymphoblastiques, Hel, Jurkat, Raji et U937. Nous avons montré que les différents inhibiteurs de COX-2 diminuent la prolifération des différentes lignées cellulaires. Les cellules U937 sont apparues comme les cellules les plus sensibles à ces inhibiteurs alors que les cellules K562 étaient les plus résistantes. Nous avons montré que cette modulation correspond à une accumulation des cellules en phase G0/G1 du cycle cellulaire, accompagnée d'une diminution précoce de l'expression de c-Myc et d'une augmentation de l'expression de marqueurs de différenciation dans les cellules U937 (CD15) et Hel (CD41a et CD61). Dans la deuxième partie de ce projet, nous avons étudié les effets des différents inhibiteurs de COX-2 sur l'apoptose induite par différents agents chimiothérapeutiques dans nos modèles cellulaires. Nous avons ainsi montré que les inhibiteurs de COX-2 inhibent fortement l'apoptose induite par plusieurs agents chimiothérapeutiques. Nous avons démontré que la prévention de l'apoptose se situe avant l'activation de Bax et de Bak. Par ailleurs, cet effet est caractérisé par une incapacité des agents chimiothérapeutiques à déclencher un stress apoptotique. Toutes nos données ont donc démontré un effet anti-apoptotique des inhibiteurs de COX-2 sur l?apoptose intrinsèque vs l'apoptose extrinsèque à un stade précoce de l'induction de l'apoptose. Ces données suggèrent des précautions quant à l'utilisation des inhibiteurs de COX-2 en combinaison avec la chimiothérapie. Dans la troisième partie de notre projet, nous avons étudié la combinaison des inhibiteurs de COX-2 avec la curcumine, une substance naturelle connue pour ses propriétés antitumorales. Nos travaux ont montré que la curcumine seule conduit à une accumulation des cellules U937 en phase G2/M du cycle cellulaire, suivie d'une induction d'apoptose. Cependant, le prétraitement des cellules U937 avec du célécoxib à des concentrations non-apoptogéniques contrecarre l'apoptose induite par la curcumine, suggérant ainsi que ce type de combinaison ne serait pas une bonne stratégie dans les cellules hématopoïétiques. L'utilisation chronique des inhibiteurs de COX-2 peut être associée à des effets secondaires importants consécutifs à l'inhibition de l'activité de COX-2. Dans la dernière partie de notre projet, nous avons démontré que le 2,5 diméthyl-célécoxib (DMC), un analogue du célécoxib qui n'inhibe pas l'activité de COX-2, induit une diminution de la prolifération cellulaire et induit l'apoptose des cellules U937 et K562. Par ailleurs, ces effets sont plus importants que ceux observés avec le célécoxib. Par conséquent, ce composé a démontré de meilleures propriétés antitumorales et représente une voie thérapeutique prometteuse contre les leucémies. Tous nos résultats soutiennent donc l'idée que les inhibiteurs de COX-2 présentent les effets anti-tumoraux les plus efficaces que lorsqu'ils sont administrés seuls. Les effets observés avec le DMC suggèrent que ce composé pourrait représenté une voie alternative aux inhibiteurs de COX-2 en thérapie anti-cancéreuse

    Effects of cyclooxygenase-2 inhibitors on cell proliferation and cell death in human hematopoietic cancer cell lines

    No full text
    Les cyclooxygénases (COXs) sont une famille d'enzymes impliquées dans la biosynthèse des prostaglandines. COX-2 est la forme inductible qui est induite pendant l'inflammation et qui est surexprimée dans plusieurs cancers. Plusieurs évidences suggèrent que COX-2 joue un rôle dans la prolifération cellulaire et l'apoptose. Ces évidences concernent surtout les tumeurs solides et les mécanismes impliqués ne sont pas complètement connus et surtout pour les cancers d'origine hématopoïétique. Pour notre étude, nous avons étudié l'effet d'inhibiteurs de COX-2 (nimésulide, NS-398 et célécoxib) sur la prolifération et l'apoptose de lignées cellulaires leucémiques et lymphoblastiques, Hel, Jurkat, Raji et U937. Nous avons montré que les différents inhibiteurs de COX-2 diminuent la prolifération des différentes lignées cellulaires. Les cellules U937 sont apparues comme les cellules les plus sensibles à ces inhibiteurs alors que les cellules K562 étaient les plus résistantes. Nous avons montré que cette modulation correspond à une accumulation des cellules en phase G0/G1 du cycle cellulaire, accompagnée d'une diminution précoce de l'expression de c-Myc et d'une augmentation de l'expression de marqueurs de différenciation dans les cellules U937 (CD15) et Hel (CD41a et CD61). Dans la deuxième partie de ce projet, nous avons étudié les effets des différents inhibiteurs de COX-2 sur l'apoptose induite par différents agents chimiothérapeutiques dans nos modèles cellulaires. Nous avons ainsi montré que les inhibiteurs de COX-2 inhibent fortement l'apoptose induite par plusieurs agents chimiothérapeutiques. Nous avons démontré que la prévention de l'apoptose se situe avant l'activation de Bax et de Bak. Par ailleurs, cet effet est caractérisé par une incapacité des agents chimiothérapeutiques à déclencher un stress apoptotique. Toutes nos données ont donc démontré un effet anti-apoptotique des inhibiteurs de COX-2 sur l?apoptose intrinsèque vs l'apoptose extrinsèque à un stade précoce de l'induction de l'apoptose. Ces données suggèrent des précautions quant à l'utilisation des inhibiteurs de COX-2 en combinaison avec la chimiothérapie. Dans la troisième partie de notre projet, nous avons étudié la combinaison des inhibiteurs de COX-2 avec la curcumine, une substance naturelle connue pour ses propriétés antitumorales. Nos travaux ont montré que la curcumine seule conduit à une accumulation des cellules U937 en phase G2/M du cycle cellulaire, suivie d'une induction d'apoptose. Cependant, le prétraitement des cellules U937 avec du célécoxib à des concentrations non-apoptogéniques contrecarre l'apoptose induite par la curcumine, suggérant ainsi que ce type de combinaison ne serait pas une bonne stratégie dans les cellules hématopoïétiques. L'utilisation chronique des inhibiteurs de COX-2 peut être associée à des effets secondaires importants consécutifs à l'inhibition de l'activité de COX-2. Dans la dernière partie de notre projet, nous avons démontré que le 2,5 diméthyl-célécoxib (DMC), un analogue du célécoxib qui n'inhibe pas l'activité de COX-2, induit une diminution de la prolifération cellulaire et induit l'apoptose des cellules U937 et K562. Par ailleurs, ces effets sont plus importants que ceux observés avec le célécoxib. Par conséquent, ce composé a démontré de meilleures propriétés antitumorales et représente une voie thérapeutique prometteuse contre les leucémies. Tous nos résultats soutiennent donc l'idée que les inhibiteurs de COX-2 présentent les effets anti-tumoraux les plus efficaces que lorsqu'ils sont administrés seuls. Les effets observés avec le DMC suggèrent que ce composé pourrait représenté une voie alternative aux inhibiteurs de COX-2 en thérapie anti-cancéreuse.Cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step in prostaglandin biosynthesis. COX-2 is the inducible isoform, upregulated during inflammation and overexpressed in various cancers. There are evidences of a role for COX-2 in cell proliferation and apoptosis especially in solid tumors, whereas little is known for cancers of hematopoietic origin. In our study, we analyzed the effect of COX-2 inhibitors (nimesulide, NS-398 and celecoxib) on cell proliferation and apoptosis of a panel of leukemic and lymphoblastic cell lines, Hel, Jurkat, K562, K562, Raji and U937. We found that the different inhibitors slow down cell proliferation in the different hematologic cell lines tested. U937 cells appeared as the most sensitive, whereas K562 were the most resistant to this effect. We provide evidence that this modulation corresponds to an accumulation of the cells in G0/G1 paralleled by an early downregulation of c-Myc and the expression of cell type-specific differentiation markers in U937 (CD15) and Hel (CD41a and CD61). In the second part of our study, we investigate the effect of COX-2 inhibitors on apoptosis induced by chemotherapeutic agents in our cell models. We demonstrated that COX-2 inhibitors strongly prevent apoptosis induced by a panel of chemotherapeutic agents. We demonstrated an early prevention of apoptotic signaling, prior to Bax/Bak activation. The preventive effect is associated with an impairment of the ability of chemotherapeutic agents to trigger their apoptogenic stress. Altogether, our results demonstrate an anti-apoptotic effect of COX-2 inhibitors on intrinsic vs. extrinsic apoptosis at early steps of apoptosis commitment. These results suggest cautions in the use of COX-2 inhibitors with chemotherapy. In the third part of our project, we investigated the combination of COX-2 inhibitors with curcumin, a natural product known for its anti-tumor properties. Our findings show that curcumin alone leads to an accumulation of U937 cells in G2/M phase of cell cycle, followed by an induction of apoptosis. However, the pretreatment of U937 cells with celecoxib at non-apoptogenic concentrations, counteracted curcumin-induced apoptosis, thus showing that this combination is not a good anti-cancer strategy in our cell models. The chronic use of COX-2 inhibitors can be associated with severe side effects due to the inhibition of COX-2 enzyme. In the last part of our project, we demonstrated that 2,5 dimethyl-celecoxib (DMC), a structurally analogue of celecoxib, which is not able to inhibit COX-2 activity, induces an inhibition of cell proliferation and an induction of apoptosis in U937 and K562 cells. These effects are stronger than those observed with celecoxib. Thus, this compound demonstrated better anti-tumor properties and may represent a promising therapeutic approach against leukemia. Altogether, our study supports the idea that COX-2 inhibitors display anti-tumor effects in our cell models, but only when administrated alone. The effects observed with DMC suggest that this compound may represent an alternative approach to COX-2 inhibitors in cancer therapy
    corecore