165 research outputs found

    The origin of the allometric scaling of lung ventilation in mammals

    Get PDF
    A model of optimal control of ventilation recently developed for humans has suggested that the localization of the transition between a convective and a diffusive transport of the respiratory gas determines how ventilation should be controlled to minimize its energetic cost at any metabolic regime. We generalized this model to any mammal, based on the core morphometric characteristics shared by all mammals' lungs and on their allometric scaling from the literature. Since the main energetic costs of ventilation are related to the convective transport, we prove that, for all mammals, the localization of the shift from a convective transport into a diffusive transport plays a critical role on keeping that cost low while fulfilling the lung function. Our model predicts for the first time where this transition zone should occur in order to minimize the energetic cost of ventilation, depending on the mammals' mass and on the metabolic regime. From that optimal localization, we are able to derive predicted allometric scaling laws for both tidal volumes and breathing rates, at any metabolic regime. We ran our model for the three common metabolic rates -- basal, field and maximal -- and showed that our predictions accurately reproduce the experimental data available in the literature. Our analysis supports the hypothesis that the mammals' allometric scaling laws of tidal volumes and breathing rates at a given metabolic rate are driven by a few core geometrical characteristics shared by the mammals' lungs and the physical processes of the respiratory gas transport

    Dengue serosurvey after a 2-month long outbreak in Nîmes, France, 2015: was there more than met the eye?

    Get PDF
    BackgroundClusters of dengue cases have recently become more frequent in areas of southern France colonised by the vector mosquito Aedes albopictus. In July 2015, a 2-month outbreak of dengue virus serotype 1 (DENV-1) was reported in Nîmes. Aim: We conducted a serosurvey in the affected area at the end of the vector activity period to determine the true extent of dengue transmission. Methods: We collected capillary blood from consenting household members, and information on their medical and travel histories, and exposure to mosquito bites. Recent infections were identified using IgM and IgG anti-DENV ELISA, followed, when positive, by plaque reduction neutralisation tests on serum against DENV 1-4 and West Nile virus. The prevalence estimator was calibrated on reference demographic data. We quantified the spatial clustering of dengue cases within the affected community and inferred the transmission tree. Results: The study participation rate was 39% (564/1,431). Three of 564 participants tested positive for DENV-1 infection (after marginal calibration, 0.41%; 95% confidence interval: 0.00-0.84). The spatial analysis showed that cases were clustered at the household level. Most participants perceived the presence of mosquitos as abundant (83%) and reported frequent mosquito bites (57%). We incidentally identified six past West Nile virus infections (0.9%; 95% CI: 0.2-1.6). Conclusion: This serosurvey confirms the potential for arboviral diseases to cause outbreaks - albeit limited for now - in France and Europe

    Derrière l’utopie du jardin collectif, la complexité d’un projet social, technique et politique

    Get PDF
    Alors que le jardin collectif, partagé ou familial, peut être perçu comme un aménagement à moindre coût, comme une démarche spontanée de réappro­priation de l’espace par des citoyens ou encore comme un objet politique naïf, cet article montre qu’il s’agit d’un projet, processus social et technique plus complexe qui cristallise divers enjeux politiques, techniques et sociaux. L’analyse des dyna­miques d’acteurs impliqués dans la création de jardins collectifs révèle des requalifications successives du projet, dans le compromis sur la matérialité, les fonctions du jardin et les usages de l’espace entre collectivités, partenaires locaux associatifs, habitants-futurs jardiniers, bailleurs et aménageurs. Le jardin collectif se présente ainsi comme un objet urbain complexe qui mobilise le recours à une expertise de la médiation sociale et paysagère, et comme un objet politique fort pour les acteurs publics et associatifs impliqués. À la lumière de cette mise en politique et de cette professionnalisation des acteurs médiateurs, nous pointons les risques d’une normalisation des modèles de jardins collectifs pouvant aller à l’encontre des aspirations sociales des habitants.While community and allotment gardens can be handled as low cost settlements, as a spontaneous movement of citizens who re-appropriate urban spaces, or as a naïve political object, this paper shows that projects of collective gardens actually refer to a complex process crystallizing various political, technical and social issues. Through the analysis of interactions among stakeholders involved in creation of collective gardens, we show successive redefinitions of the project, based on compromises on materiality, functions and uses of the place between public and community actors, inhabitants, and landlords. Collective garden thus appear as complex urban objects which require an increasing role of professional and experts in social mediation and landscape design, and as highly politicized objects for public and community actors involved. Highlighting this politicization and professionalization, we point out risks of standardization of collective gardens models, which could go against social aspirations

    Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results

    Get PDF
    We study the fine tuning in the parameter space of the semi-constrained NMSSM, where most soft Susy breaking parameters are universal at the GUT scale. We discuss the dependence of the fine tuning on the soft Susy breaking parameters M_1/2 and m0, and on the Higgs masses in NMSSM specific scenarios involving large singlet-doublet Higgs mixing or dominant Higgs-to-Higgs decays. Whereas these latter scenarios allow a priori for considerably less fine tuning than the constrained MSSM, the early LHC results rule out a large part of the parameter space of the semi-constrained NMSSM corresponding to low values of the fine tuning.Comment: 19 pages, 10 figures, bounds from Susy searches with ~1/fb include

    Can chemical and molecular biomarkers help discriminate between industrial, rural and urban environments?

    Get PDF
    Abstract Air samples from four contrasting outdoor environments including a park, an arable farm, a waste water treatment plant and a composting facility were analysed during the summer and winter months. The aim of the research was to study the feasibility of differentiating microbial communities from urban, rural and industrial areas between seasons with chemical and molecular markers such as microbial volatile organic compounds (MVOCs) and phospholipid fatty acids (PLFAs). Air samples (3 l) were collected every 2 h for a total of 6 h in order to assess the temporal variations of MVOCs and PLFAs along the day. MVOCs and VOCs concentrations varied over the day, especially in the composting facility which was the site where more human activities were carried out. At this site, total VOC concentration varied between 80 and 170 μg m−3 in summer and 20–250 μg m−3 in winter. The composition of MVOCs varied between sites due to the different biological substrates including crops, waste water, green waste or grass. MVOCs composition also differed between seasons as in summer they are more likely to get modified by oxidation processes in the atmosphere and in winter by reduction processes. The composition of microbial communities identified by the analysis of PLFAs also varied among the different locations and between seasons. The location with higher concentrations of PLFAs in summer was the farm (7297 ng m−3) and in winter the park (11,724 ng m−3). A specific set of MVOCs and PLFAs that most represent each one of the locations was identified by principal component analyses (PCA) and canonical analyses. Further to this, concentrations of both total VOCs and PLFAs were at least three times higher in winter than in summer. The difference in concentrations between summer and winter suggest that seasonal variations should be considered when assessing the risk of exposure to these compounds

    Cent scientifiques répliquent à SEA (Suppression des Expériences sur l’Animal vivant) et dénoncent sa désinformation

    Full text link
    La lutte contre la maltraitance animale est sans conteste une cause moralement juste. Mais elle ne justifie en rien la désinformation à laquelle certaines associations qui s’en réclament ont recours pour remettre en question l’usage de l’expérimentation animale en recherche

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Microbial networks involved in hydrocarbon degradation at oxic/anoxic interfaces of coastal marine sediments.

    No full text
    Les écosystèmes marins côtiers sont constament soumis à des pollutions, notamment aux hydrocarbures, du fait de leur localisation et de leurs caractéristiques environnementales. Le rôle clé des microorganismes dans la dégradation de ces polluants est aujourd’hui très bien décrit. Toutefois, les conditions d’oxygénation fluctuantes dans ces environnements côtiers, dues aux marées et aux activités de bioturbation de la macrofaune, influencent les communautés microbiennes.Ainsi, ce travail de thèse a eu pour objectif de caractériser, l’assemblage de communautés microbiennes hydrocarbonoclastes de sédiments marins côtiers soumises à des oscillations oxie/anoxie en présence de pétrole lors d’une expérience en bioréacteurs. L’adaptation des bactéries marines hydrocarbonoclastes notamment des genres Alcanivorax et Cycloclasticus vis-à-vis de ces variations d’oxygène a pu être investiguée par oligotypage. Des écotypes ont été identifiés en fonction des conditions d’oxygénation démontrant ainsi les capacités d’adaptation aux conditions oscillantes d’oxygène de ces deux genres. La structure des communautés archéennes (séquençage des transcrits du gène de l’ARNr 16S) n’a pas montré de modification évidente liée aux conditions d’oxygénation démontrant ainsi des capacités d’adaptation et/ou de résistance plus importantes chez ces microorganismes comparées aux communautés bactériennes. Enfin, les analyses métagénomiques ont mis en évidence une réponse fonctionnelle spécifique aux oscillations oxie/anoxie. Ainsi, ces travaux de thèse apportent de nouvelles connaissances sur l’influence des variations d’oxygénation sur les communautés microbiennes et par conséquent sur la dégradation des hydrocarbures au sein des écosystèmes marins côtiers.Coastal marine ecosystems are constantly subject to pollution, particularly hydrocarbons, because of their location and their environmental characteristics. The key role of microorganisms in the degradation of these pollutants is now well described. However, fluctuating oxygenation conditions in these coastal environments, due to tides and macrofauna bioturbation activities influence microbial communities.Thus, this thesis work aimed to characterize the assembly of microbial hydrocarbonoclastic communities of coastal marine sediments subjected to oxic/anoxic oscillations in the presence of oil during a bioreactor experiment. The adaptation of MOHCB, particularly of Alcanivorax and Cycloclasticus genera, to these oxygen variations has been investigated by oligotyping. Ecotypes were identified according to the oxygenation conditions demonstrating adaptation capacities of these two genera to the oscillating oxygen conditions. The structure of archaeal communities (16S rRNA transcript sequencing) did not show any modification related to the oxygenation conditions thus demonstrating greater adaptation and/or resistance capacities in these microorganisms compared to the bacterial communities. Finally, metagenomics analyses revealed a specific functional response to oxic/anoxic oscillations. Thus, this thesis provides new insights into the influence of oxygenation variations on microbial communities and consequently on the degradation of hydrocarbons in coastal marine ecosystems
    corecore