44 research outputs found
Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations
Recent studies point to the sensitivity of mid-latitude winter climate to Arctic sea ice variability. However, there remain contradictory results in terms of character and timing of Northern Hemisphere large-scale circulation features to Arctic sea ice changes. This study assesses the impact of realistic late autumn eastern Arctic sea ice anomalies on atmospheric wintertime circulation at mid-latitudes, pointing to a hidden potential for seasonal predictability. âUsing a dynamical seasonal prediction system, an ensemble of seasonal forecast simulations of 23 historical winter seasons is run with reduced November sea ice cover in the Barents-Kara Seas, and is compared to the respective control seasonal hindcast simulations set. âA non energy-conserving approach is adopted for achieving the desired sea ice loss, with artificial heat being added conditionally to the ocean surface heat fluxes so as to inhibit the formation of sea ice during November. Our results point to a robust atmospheric circulation response in the North Pacific sector, similar to previous findings on the multidecadal timescale. Specifically, an anticyclonic anomaly at upper and lower levels is identified over the eastern midlatitude North Pacific, leading to dry conditions over the North American southwest coast. The responses are related to a re-organization (weakening) of west-Pacific tropical convection and interactions with the tropical Hadley circulation. âA possible interaction of the poleward-shifted Pacific eddy-driven jet stream and the Hadley cell is discussedâ. âThe winter circulation response in the Euro-Atlantic sector is ephemeral in character and statistically significant in January only, corroborating previous findings of an intermittent and non-stationary Arctic sea ice-NAO link during boreal winter. These results âaid our understanding of the seasonal impacts of reduced eastern Arctic sea ice on the midlatitude atmospheric circulation with implications for seasonal predictability in wintertime
Management approaches and aquaculture of sturgeons in the Lower Danube region countries
Summary This paper presents the status and trends in management of sturgeon species and the development of sturgeon aquaculture in the Lower Danube countries: Romania, Bulgaria, Serbia, Ukraine and Moldova. Sturgeon fishery moratoria and aquaculture development represent first steps in the Lower Danube countries to combat extirpation. Supportive stocking was used as a compensation for the impact of sturgeon fishery and dam construction, but these efforts unfortunately lacked adequate cooperation and coordination between and among region countries. Unsolved problems remain, such as the presence of illegal sturgeon fishery, water pollution, habitat destruction and fragmentation. Construction of fish passes and habitat restoration project developments are two key issues that have yet to be tackled in the Lower Danube region
The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond
Regional variation in the role of humidity on city-level heat-related mortality
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems. Š The Author(s) 2024.Q.G., M.H., and T.O. were supported by the Environment Research and Technology Development Fund (JPMEERF23S21120) of the Environmental Restoration and Conservation Agency provided by the Ministry of the Environment of Japan. Q.G. was supported by the Musha Shugyo international travel grants from the School of Engineering, The University of Tokyo. T.O. was supported by the Japan Society for the Promotion of Science (KAKENHI: 21H05002), and the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan (JPMEERF23S21100). M.N.M. was supported by the European Commission (H2020-MSCA-IF-2020) under REA grant agreement no. 101022870. A.G. was supported by the Medical Research Council-UK (Grant ID: MR/V034162/1) and European Unionâs Horizon 2020 Project Exhaustion (Grant ID: 820655). J.K. was supported by the Czech Science Foundation, project 23-06749S. A.M.V.-C. supported by the Swiss National Science Foundation (TMSGI3_211626). V.H. was supported by the European Unionâs Horizon 2020 research and innovation program (H2020-MSCA-IF-2020, Grant No.: 101032087). Y.S. was supported by Brain Pool Plus program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2021H1D3A2A03097768), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2023R1A2C1004754)
Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models
This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Unionâs Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administrationâs Climate Program Office
Institutional investors and corporate governance
We provide a comprehensive overview of the role of institutional investors in corporate governance with three main components. First, we establish new stylized facts documenting the evolution and importance of institutional ownership. Second, we provide a detailed characterization of key aspects of the legal and regulatory setting within which institutional investors govern portfolio firms. Third, we synthesize the evolving response of the recent theoretical and empirical academic literature in finance to the emergence of institutional investors in corporate governance. We highlight how the defining aspect of institutional investors â the fact that they are financial intermediaries â differentiates them in their governance role from standard principal blockholders. Further, not all institutional investors are identical, and we pay close attention to heterogeneity amongst institutional investors as blockholders
Seasonality of mortality under climate change: a multicountry projection study
Data sharing:
All data used in our study were obtained from the MCC Collaborative Research Network under a data-sharing agreement and cannot be made publicly available. Researchers can refer to collaborators of the Network, who are listed as coauthors of this Article (primary contact: Antonio Gasparrini, [email protected]), for information on accessing the data for each country. The R code is available on request, and a reproducible example is publicly available on the personal GitHub website of the first author (https://github.com/LinaMadaniyazi).For more on the MCC see https://mccstudy.lshtm.ac.uk/Supplementary Material is available online at: https://www.sciencedirect.com/science/article/pii/S2542519623002693#sec1 .Background:
Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones.
Methods:
In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones.
Findings:
The MCC dataset included 126â809â537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126â766â164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0¡96 to 1¡11, and the change in attributable fraction ranged from 0¡002% to 0¡06% under the SSP5-8.5 (highest emission) scenario.
Interpretation:
A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates.This study was primarily supported by the Environment Research and Technology Development Fund (grant number JPMEERF20231007) of the Environmental Restoration and Conservation Agency, provided by the Ministry of the Environment of Japan. MH was supported by the Japan Science and Technology Agency as part of the Strategic International Collaborative Research Program (grant number JPMJSC20E4). AG was supported by the UK Medical Research Council (grant number MR/V034162/1) and the EU's Horizon 2020 research project Exhaustion (grant number 820655). AU and JK were supported by the Czech Science Foundation (project 22â24920S). JJKJ was supported by the Academy of Finland (grant number 310372; Global Health Risks Related to Atmospheric Composition and Weather Consortium). FS was supported by the Italian Ministry of University and Research, Department of Excellence project 2023â2027, Rethinking Data ScienceâDepartment of Statistics, Computer Science and ApplicationsâUniversity of Florence
Global, regional, and national burden of mortality associated with cold spells during 2000â19: a three-stage modelling study
Data sharing:
All used data were obtained from the Multi-Country Multi-City (MCC) Collaborative Research Network (https://mccstudy.lshtm.ac.uk/) under a data sharing agreement and cannot be made publicly available. Researchers can refer to MCC participants, who are listed as coauthors of our study, for information on accessing the data for each country.Supplementary Material is available online at: https://www.sciencedirect.com/science/article/pii/S2542519623002772#sec1 .Background:
Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells.
Methods:
A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000â19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world.
Findings:
Globally, 205â932 (95% empirical CI [eCI] 162â692â250â337) excess deaths, representing 3¡81 (95% eCI 2¡93â4¡71) excess deaths per 1000 deaths (excess death ratio), and 3¡03 (2¡33â3¡75) excess deaths per 100â000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016â19 increased by 0¡12 percentage points and the excess death rate in 2016â19 increased by 0¡18 percentage points, compared with those in 2000â03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones.
Interpretation:
Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells.Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion. This study was supported by the Australian Research Council (DP210102076), the Australian National Health and Medical Research Council (APP2000581) and the EU's Horizon 2020 Project Exhaustion (Grant ID: 820655). YGa and WH were supported by the China Scholarship Council (number 202008110182 and number 202006380055). YGu was supported by the Leader Fellowship (number APP2008813) of the Australian National Health and Medical Research Council. QZ was supported by the Natural Science Foundation of Shandong Province in China (grant ZR2021QH318) and the Shandong Excellent Young Scientists Fund Program (Overseas) (grant 2022HWYQ-055). AG was supported by the European Union's Horizon 2020 Project Exhaustion (Grant ID: 820655). JK and AU were supported by the Czech Science Foundation (project 22-24920S). VH was supported by the European Union's Horizon 2020 Research and Innovation Programme (Marie SkĹodowska-Curie Grant Agreement Number 101032087), and SL was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (number APP2009866)
Impact of population aging on future temperature-related mortality at different global warming levels
Data availability:
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Data were collected within the MCC Collaborative Research Network under a data sharing agreement and cannot be made publicly available.Code availability:
A sample of the analysis code is available from https://github.com/CHENlab-Yale/MCC_ProjAging_Temp .Supplementary information is available online at: https://link-springer-com.ezproxytest.brunel.ac.uk/article/10.1038/s41467-024-45901-z#Sec15 .Older adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5â°C, 2â°C, and 3â°C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%â0.4% at 1.5â3â°C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modeling, coordinated and promoted CMIP6. We thank the climate modeling groups for producing and making available their model output, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. K.C. was supported by the Yale Planetary Solutions Project seed grant. A.G., A.S., and S.R. were supported by the European Unionâs Horizon 2020 Project Exhaustion grant (820655). A.G. was also supported by the Medical Research Council UK grant (MR/V034162/1). J.M. received funding from the Fundação para a CiĂŞncia e a Tecnlogia Grant (SFRH/BPD/115112/2016). A.T. was supported by the MCIN/AEI/10.13039/501100011033 grant (CEX2018-000794-S). A.U. and J.K. were supported by the Czech Science Foundation (22-24920S). F.S. was supported by the Italian Ministry of University and Research (MUR), Department of Excellence project 2023-2027 ReDS âRethinking Data Scienceâ - Department of Statistics, Computer Science and Applications - University of Florence. MNM. was supported by the European Commission (H2020-MSCA-IF-2020) under REA grant agreement no. 101022870. A.V.C. acknowledges the support of the Swiss National Foundation (TMSGI3_211626). V.H. received funding from the European Unionâs Horizon 2020 research and innovation program (Marie SkĹodowska-Curie Grant Agreement No.: 101032087)