39 research outputs found
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI☆
Magnetic resonance imaging (MRI) can be used to detect lesions in the brains of multiple sclerosis (MS) patients and is essential for diagnosing the disease and monitoring its progression. In practice, lesion load is often quantified by either manual or semi-automated segmentation of MRI, which is time-consuming, costly, and associated with large inter- and intra-observer variability. We propose OASIS is Automated Statistical Inference for Segmentation (OASIS), an automated statistical method for segmenting MS lesions in MRI studies. We use logistic regression models incorporating multiple MRI modalities to estimate voxel-level probabilities of lesion presence. Intensity-normalized T1-weighted, T2-weighted, fluid-attenuated inversion recovery and proton density volumes from 131 MRI studies (98 MS subjects, 33 healthy subjects) with manual lesion segmentations were used to train and validate our model. Within this set, OASIS detected lesions with a partial area under the receiver operating characteristic curve for clinically relevant false positive rates of 1% and below of 0.59% (95% CI; [0.50%, 0.67%]) at the voxel level. An experienced MS neuroradiologist compared these segmentations to those produced by LesionTOADS, an image segmentation software that provides segmentation of both lesions and normal brain structures. For lesions, OASIS out-performed LesionTOADS in 74% (95% CI: [65%, 82%]) of cases for the 98 MS subjects. To further validate the method, we applied OASIS to 169 MRI studies acquired at a separate center. The neuroradiologist again compared the OASIS segmentations to those from LesionTOADS. For lesions, OASIS ranked higher than LesionTOADS in 77% (95% CI: [71%, 83%]) of cases. For a randomly selected subset of 50 of these studies, one additional radiologist and one neurologist also scored the images. Within this set, the neuroradiologist ranked OASIS higher than LesionTOADS in 76% (95% CI: [64%, 88%]) of cases, the neurologist 66% (95% CI: [52%, 78%]) and the radiologist 52% (95% CI: [38%, 66%]). OASIS obtains the estimated probability for each voxel to be part of a lesion by weighting each imaging modality with coefficient weights. These coefficients are explicit, obtained using standard model fitting techniques, and can be reused in other imaging studies. This fully automated method allows sensitive and specific detection of lesion presence and may be rapidly applied to large collections of images
Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images
[EN] The human cerebellum plays an essential role in motor control, is involved in cognitive function (i.e., attention, working memory, and language), and helps to regulate emotional responses. Quantitative in-vivo assessment of the cerebellum is important in the study of several neurological diseases including cerebellar ataxia, autism, and schizophrenia. Different structural subdivisions of the cerebellum have been shown to correlate with differing pathologies. To further understand these pathologies, it is helpful to automatically parcellate the cerebellum at the highest fidelity possible. In this paper, we coordinated with colleagues around the world to evaluate automated cerebellum parcellation algorithms on two clinical cohorts showing that the cerebellum can be parcellated to a high accuracy by newer methods. We characterize these various methods at four hierarchical levels: coarse (i.e., whole cerebellum and gross structures), lobe, subdivisions of the vermis, and the lobules. Due to the number of labels, the hierarchy of labels, the number of algorithms, and the two cohorts, we have restricted our analyses to the Dice measure of overlap. Under these conditions, machine learning based methods provide a collection of strategies that are efficient and deliver parcellations of a high standard across both cohorts, surpassing previous work in the area. In conjunction with the rank-sum computation, we identified an overall winning method.The data collection and labeling of the cerebellum was supported in part by the NIH/NINDS grant R01 NS056307 (PI: J.L. Prince) and NIH/NIMH grants R01 MH078160 & R01 MH085328 (PI: S.H. Mostofsky). PMT is supported in part by the NIH/NIBIB grant U54 EB020403. CERES2 development was supported by grant UPV2016-0099 from the Universitat Politecnica de Valencia (PI: J.V. Manjon); the French National Research Agency through the Investments for the future Program IdEx Bordeaux (ANR-10-IDEX-03-02, HL-MRI Project; PI: P. Coupe) and Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57; PI: P. Coupe). Support for the development of LiviaNET was provided by the National Science and Engineering Research Council of Canada (NSERC), discovery grant program, and by the ETS Research Chair on Artificial Intelligence in Medical Imaging. The authors wish to acknowledge the invaluable contributions offered by Dr. George Fein (Dept. of Medicine and Psychology, University of Hawaii) in preparing this manuscript.Carass, A.; Cuzzocreo, JL.; Han, S.; Hernandez-Castillo, CR.; Rasser, PE.; Ganz, M.; Beliveau, V.... (2018). Comparing fully automated state-of-the-art cerebellum parcellation from magnetic resonance images. NeuroImage. 183:150-172. https://doi.org/10.1016/j.neuroimage.2018.08.003S15017218
A JOINT REGISTRATION AND SEGMENTATION APPROACH TO SKULL STRIPPING
Extraction of the cerebrum, cerebellum, and brain stem from structural magnetic resonances images (MRIs) is an important initial step in neuroimaging. We present an automated algorithm that solves this difficult problem, often referred to as skull stripping, which is novel for its use of registration, segmentation, and morphological operations. Our algorithm is also concerned with an accurate representation of the grey matter boundary, which is a unique feature. We also present results demonstrating the accuracy of this approach. Index Terms — Biomedical image processing, brain, image registration, image segmentation
A comparison of supervised machine learning algorithms and feature vectors for MS lesion segmentation using multimodal structural MRI.
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance
A Comparison of Supervised Machine Learning Algorithms and Feature Vectors for MS Lesion Segmentation Using Multimodal Structural MRI
<div><p>Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.</p></div
Health effects of lesion localization in multiple sclerosis: spatial registration and confounding adjustment.
Brain lesion localization in multiple sclerosis (MS) is thought to be associated with the type and severity of adverse health effects. However, several factors hinder statistical analyses of such associations using large MRI datasets: 1) spatial registration algorithms developed for healthy individuals may be less effective on diseased brains and lead to different spatial distributions of lesions; 2) interpretation of results requires the careful selection of confounders; and 3) most approaches have focused on voxel-wise regression approaches. In this paper, we evaluated the performance of five registration algorithms and observed that conclusions regarding lesion localization can vary substantially with the choice of registration algorithm. Methods for dealing with confounding factors due to differences in disease duration and local lesion volume are introduced. Voxel-wise regression is then extended by the introduction of a metric that measures the distance between a patient-specific lesion mask and the population prevalence map
The scaled partial Area Under the Curve (pAUC) for each algorithm on each feature vector.
<p>The differences in scaled pAUC comes more from differences in feature vectors than differences in classification algorithms. The scaled pAUC of the simpler classification algorithms in the developed feature vectors are larger than that of the more complex classifiers on the original features in the unnormalized feature vector.</p
The super learner coefficient versus the number of voxels the algorithm is fit on for the (A) unnormalized and the (B) smoothed and moments feature vectors.
<p>As the number of voxels used to fit the algorithm changes, the super learner consistently assigns large weights to the same small number of algorithms. For the unnormalized feature vector, high coefficient weights are selected for the logistic regression, one of the random forest tuning parameters, and the Gaussian mixture model. On the smoothed and moments feature vector, the super learner favors the less complex algorithms: logistic regression, the quadratic discriminant analysis, and the linear discriminant analysis. Some weight is also assigned to the Gaussian mixture model and the random forest.</p
The impact of downsampling the training set on computational time and classification performance.
<p>Time in hours to fit the algorithm (left column) and scaled pAUC for false positive rates up to 10% (right column) versus the number of voxels the algorithm is fit on for the unnormalized (A,B) and smoothed and moments feature vectors (C,D). Here we see the effectiveness of downsampling the training set as the performance of the algorithms is not impacted and the computational time is significantly lowered.</p