8 research outputs found

    Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line- derived neurotrophic factor

    Get PDF
    The transplantation of fetal mesencephalic cell suspensions into the brain striatal system is an emerging treatment for Parkinson's disease. However, one objection to this procedure is the relatively poor survival of implanted cells. The ability of neurotrophic factors to regulate developmental neuron survival and differentiation suggests they could be used to enhance the success of cerebral grafts. We studied the effects of neurotrophin-3 (NT-3) or glial cell line-derived neurotrophic factor (GDNF) on the survival of dopaminergic neurons from rat fetal ventral mesencephalic cells (FMCs) implanted into the rat striatum. Two conditions were tested: (a) incubation of FMCs in media containing NT-3 and GDNF, prior to grafting, and (b) co-grafting of FMCs with cells engineered to overexpress high levels of NT-3 or GDNF. One week after grafting into the rat striatum, the survival of TH+ neurons was significantly increased by pretreatment of ventral mesencephalic cells with NT-3 or GDNF. Similarly, co-graft of ventral mesencephalic cells with NT-3- or GDNF-overexpressing cells, but not the mock-transfected control cell line, increased the survival of graft-derived dopaminergic neurons. Interestingly, we also found that co-grafting of GDNF-overexpressing cells was less effective than NT-3 at improving the survival of fetal dopaminergic neurons in the grafts, and that only GDNF induced intense TH immunostaining in fibers and nerve endings of the host tissue surrounding the implant. Thus, our results suggest that NT-3, by strongly enhancing survival, and GDNF, by promoting both survival and sprouting, may improve the efficiency of fetal transplants in the treatment of Parkinson's disease

    Calyx junction dismantlement and synaptic uncoupling precede hair cell extrusion in the vestibular sensory epithelium during sub-chronic 3,3'-iminodipropionitrile ototoxicity in the mouse

    Get PDF
    The cellular and molecular events that precede hair cell (HC) loss in the vestibular epithelium during chronic ototoxic exposure have not been widely studied. To select a study model, we compared the effects of sub-chronic exposure to different concentrations of 3,3′-iminodipropionitrile (IDPN) in the drinking water of two strains of mice and of both sexes. In subsequent experiments, male 129S1/SvImJ mice were exposed to 30 mM IDPN for 5 or 8 weeks; animals were euthanized at the end of the exposure or after a washout period of 13 weeks. In behavioral tests, IDPN mice showed progressive vestibular dysfunction followed by recovery during washout. In severely affected animals, light and electron microscopy observations of the vestibular epithelia revealed HC extrusion towards the endolymphatic cavity. Comparison of functional and ultrastructural data indicated that animals with fully reversible dysfunction did not have significant HC loss or stereociliary damage, but reversible dismantlement of the calyceal junctions that characterize the contact between type I HCs (HCI) and their calyx afferents. Immunofluorescent analysis revealed the loss of calyx junction proteins, Caspr1 and Tenascin-C, during exposure and their recovery during washout. Synaptic uncoupling was also recorded, with loss of pre-synaptic Ribeye and post-synaptic GluA2 puncta, and differential reversibility among the three different kinds of synaptic contacts existing in the epithelium. qRT-PCR analyses demonstrated that some of these changes are at least in part explained by gene expression modifications. We concluded that calyx junction dismantlement and synaptic uncoupling are early events in the mouse vestibular sensory epithelium during sub-chronic IDPN ototoxicity

    Mecanismes de neurodegeneració i neuroprotecció en models de parkinsonisme en rata

    Get PDF
    [cat] Per a modelar alguns aspectes bioquímics i anatomopatològics de la malaltia de Parkinson en la rata, en aquesta tesi hem començant utilitzant la neurotoxina MPP+, de relativament recent aparició i la més veterana 6-OHDA i hem acabat emprant el propi neurotransmissor de les neurones que degeneren, la dopamina, intentant esbrinar els seus mecanismes de lesió. L’estudi s’ha iniciat en el animal in vivo, ha continuat en talls gruixuts de teixit ex vivo i ha acabat en mitocondris in vitro. Hem volgut reproduir resultats d’altres grups però amb abordat¬ges experimentals més senzills i econòmics, al nostre abast. Hem volgut aplicar el nostre model animal per a estudis comparatius amb la malaltia humana Per a la introducció he partit d’uns 50 articles de revisió actualitzats, amb la voluntat d’adquirir una visió panoràmica de la malaltia de Parkinson: les hipòtesis etiopatogèniques, les manifestacions clíniques, els trets anatomopatològics i bioquímics, així com dels models animals que s’utilitzen per a reproduir-la. En aquests articles he trobat les referències biblogràfiques per aprofundir en els aspectes més directament relacionats amb els experiments realitzats. Per als resultats, que s’han de contemplar dins el marc de la participació en projectes dels nostre grup i d’altres que utilitzaven aquests models animals d’experimentació, hem triat aquells en els que he participat directament, treballs que en alguns casos han estat els preliminars per altres treballs de doctorat del grup. Pràcticament tots els resultats que presentem han estat publicats, com article, en revistes internacionals, aquí queden recollits en l’apartat d’annexes, raó per la qual en la introducció general no consten alguns conceptes introductoris que apareixen en cadascun d’ells

    Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line- derived neurotrophic factor

    No full text
    The transplantation of fetal mesencephalic cell suspensions into the brain striatal system is an emerging treatment for Parkinson's disease. However, one objection to this procedure is the relatively poor survival of implanted cells. The ability of neurotrophic factors to regulate developmental neuron survival and differentiation suggests they could be used to enhance the success of cerebral grafts. We studied the effects of neurotrophin-3 (NT-3) or glial cell line-derived neurotrophic factor (GDNF) on the survival of dopaminergic neurons from rat fetal ventral mesencephalic cells (FMCs) implanted into the rat striatum. Two conditions were tested: (a) incubation of FMCs in media containing NT-3 and GDNF, prior to grafting, and (b) co-grafting of FMCs with cells engineered to overexpress high levels of NT-3 or GDNF. One week after grafting into the rat striatum, the survival of TH+ neurons was significantly increased by pretreatment of ventral mesencephalic cells with NT-3 or GDNF. Similarly, co-graft of ventral mesencephalic cells with NT-3- or GDNF-overexpressing cells, but not the mock-transfected control cell line, increased the survival of graft-derived dopaminergic neurons. Interestingly, we also found that co-grafting of GDNF-overexpressing cells was less effective than NT-3 at improving the survival of fetal dopaminergic neurons in the grafts, and that only GDNF induced intense TH immunostaining in fibers and nerve endings of the host tissue surrounding the implant. Thus, our results suggest that NT-3, by strongly enhancing survival, and GDNF, by promoting both survival and sprouting, may improve the efficiency of fetal transplants in the treatment of Parkinson's disease

    Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line- derived neurotrophic factor

    No full text
    The transplantation of fetal mesencephalic cell suspensions into the brain striatal system is an emerging treatment for Parkinson's disease. However, one objection to this procedure is the relatively poor survival of implanted cells. The ability of neurotrophic factors to regulate developmental neuron survival and differentiation suggests they could be used to enhance the success of cerebral grafts. We studied the effects of neurotrophin-3 (NT-3) or glial cell line-derived neurotrophic factor (GDNF) on the survival of dopaminergic neurons from rat fetal ventral mesencephalic cells (FMCs) implanted into the rat striatum. Two conditions were tested: (a) incubation of FMCs in media containing NT-3 and GDNF, prior to grafting, and (b) co-grafting of FMCs with cells engineered to overexpress high levels of NT-3 or GDNF. One week after grafting into the rat striatum, the survival of TH+ neurons was significantly increased by pretreatment of ventral mesencephalic cells with NT-3 or GDNF. Similarly, co-graft of ventral mesencephalic cells with NT-3- or GDNF-overexpressing cells, but not the mock-transfected control cell line, increased the survival of graft-derived dopaminergic neurons. Interestingly, we also found that co-grafting of GDNF-overexpressing cells was less effective than NT-3 at improving the survival of fetal dopaminergic neurons in the grafts, and that only GDNF induced intense TH immunostaining in fibers and nerve endings of the host tissue surrounding the implant. Thus, our results suggest that NT-3, by strongly enhancing survival, and GDNF, by promoting both survival and sprouting, may improve the efficiency of fetal transplants in the treatment of Parkinson's disease

    Vestibular toxicity of cis-2-pentenenitrile in the rat

    No full text
    cis-2-Pentenenitrile, an intermediate in the synthesis of nylon and other products, causes permanent behavioral deficits in rodents. Other low molecular weight nitriles cause degeneration either of the vestibular sensory hair cells or of selected neuronal populations in the brain. Adult male Long-Evans rats were exposed to cis-2-pentenenitrile (0, 1.25, 1.50, 1.75, or 2.0 mmol/kg, oral, in corn oil) and assessed for changes in open field activity and rating scores in a test battery for vestibular dysfunction. Surface preparations of the vestibular sensory epithelia were observed for hair cell loss using scanning electron microscopy. A separate experiment examined the impact of pre-treatment with the universal CYP inhibitor,1-aminobenzotriazole, on the effect of cis-2-pentenenitrile on vestibular rating scores. The occurrence of degenerating neurons in the central nervous system was assessed by Fluoro-Jade C staining. cis-2-Pentenenitrile had a dose-dependent effect on body weight. Rats receiving 1.50 mmol/kg or more of cis-2-pentenenitrile displayed reduced rearing activity in the open field and increased rating scores on the vestibular dysfunction test battery. Hair cell loss was observed in the vestibular sensory epithelia and correlated well with the behavioral deficits. Pre-treatment with 1-aminobenzotriazole blocked the behavioral effect. Fluoro-Jade C staining did not reveal significant neuronal degeneration in the central nervous system apart from neurite labeling in the olfactory glomeruli. We conclude that cis-2-pentenenitrile causes vestibular toxicity in a similar way to allylnitrile, cis-crotononitrile and 3,3′-iminodipropionitrile (IDPN), and also shares other targets such as the olfactory system with these other nitriles. The present data also suggest that CYP-mediated bioactivation is involved in cis-2-pentenenitrile toxicity

    Trabajo cooperativo del profesorado del 1er semestre de la Diplomatura de Enfermería de la UB: 'Jornada conjunta para la integración de contenidos sobre el alcohol'

    Get PDF
    Se realizó una sesión conjunta en el aula, por parte del profesorado del 1er. semestre de los estudios de la Diplomatura de Enfermería con la finalidad de integrar contenidos de todas las asignaturas..

    Trabajo cooperativo del profesorado del 1er semestre de la Diplomatura de Enfermería de la UB: 'Jornada conjunta para la integración de contenidos sobre el alcohol'

    No full text
    Se realizó una sesión conjunta en el aula, por parte del profesorado del 1er. semestre de los estudios de la Diplomatura de Enfermería con la finalidad de integrar contenidos de todas las asignaturas..
    corecore