8,025 research outputs found

    Positive Influence Of Education Partnerships For Teaching Integrated STEM Through Drone Competition

    Get PDF
    While enhancing the STEM career pipeline through improved quality and quantity of STEM teaching available to an ever-widening diversity is K-12 students is garnering significant attention across the U.S., there lacks widely adopted implementation and support models that efficiently make full advantage of the vast human and fiscal resources available. A wide swath of STEM education stake-holding partners—schools, businesses, government agencies, non-profit organizations, and institutions of higher education—frequently are compelled to provide support and guidance but lack easy to follow pathways in order to do so. This research study describes and documents a unique vehicle to bring often disparate partners to a unified effort under the banner of drone education designed to improve STEM and technology-oriented career pathways. Identified barriers that the collaborative partnership helped overcome to ensure success include providing: modest start-up costs for modern high-tech equipment for participating schools (drones); an infrastructure for leveraging the consistently successful approach to providing regional and statewide competitive events (precision drone flight and knowledge competitions); large-scale buildings and facilities to host competitive festivals and events (e.g., indoor sports stadiums); and K-12 teacher professional development programs along with classroom-ready instructional materials needed to nurture and sustain student drone education programs

    Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Get PDF
    BACKGROUND: Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. METHODS: Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L), a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1(R)). Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. RESULTS AND CONCLUSION: All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1(R )genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1(R )and Ace.1(S )genes did not differ significantly from mosquitoes that carried only Ace.1(S )genes on any of the treated nets, indicating that the Ace.1(R )allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut

    Large-scale Star Formation Triggering in the Low-mass Arp 82 System: A Nearby Example of Galaxy Downsizing Based on UV/Optical/Mid-IR Imaging

    Get PDF
    As part of our Spitzer Spirals, Bridges, and Tails project to help understand the effects of galaxy interactions on star formation, we analyze GALEX ultraviolet, SARA optical, and Spitzer infrared images of the interacting galaxy pair Arp 82 (NGC 2535/6) and compare to a numerical simulation of the interaction. We investigate the multiwavelength properties of several individual star forming complexes (clumps). Using optical and UV colors, EW(Halpha), and population synthesis models we constrain the ages of the clumps and find that the median clump age is about 12 Myr. The clumps have masses ranging from a few times 10^6 to 10^9 solar masses. In general, the clumps in the tidal features have similar ages to those in the spiral region, but are less massive. The 8 micron and 24 micron luminosities are used to estimate the far-infrared luminosities and the star formation rates of the clumps. The total clump star formation rate is 2.0+/-0.8 solar masses per year, while the entire Arp 82 system is forming stars at a rate of 4.9+/-2.0 solar masses per year. We find, for the first time, stars in the HI arc to the southeast of the NGC 2535 disk. Population synthesis models indicate that all of the observed populations have young to intermediate ages. We conclude that although the gas disks and some old stars may have formed early-on, the progenitors are late-type or low surface brightness and the evolution of these galaxies was halted until the recent encounter.Comment: Accepted for publication in the AJ, 22 Figures, 5 Table

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.850.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    Realistic Exact Solution for the Exterior Field of a Rotating Neutron Star

    Get PDF
    A new six-parametric, axisymmetric and asymptotically flat exact solution of Einstein-Maxwell field equations having reflection symmetry is presented. It has arbitrary physical parameters of mass, angular momentum, mass--quadrupole moment, current octupole moment, electric charge and magnetic dipole, so it can represent the exterior field of a rotating, deformed, magnetized and charged object; some properties of the closed-form analytic solution such as its multipolar structure, electromagnetic fields and singularities are also presented. In the vacuum case, this analytic solution is matched to some numerical interior solutions representing neutron stars, calculated by Berti & Stergioulas (Mon. Not. Roy. Astron. Soc. 350, 1416 (2004)), imposing that the multipole moments be the same. As an independent test of accuracy of the solution to describe exterior fields of neutron stars, we present an extensive comparison of the radii of innermost stable circular orbits (ISCOs) obtained from Berti & Stergioulas numerical solutions, Kerr solution (Phys. Rev. Lett. 11, 237 (1963)), Hartle & Thorne solution (Ap. J. 153, 807, (1968)), an analytic series expansion derived by Shibata & Sasaki (Phys. Rev. D. 58 104011 (1998)) and, our exact solution. We found that radii of ISCOs from our solution fits better than others with realistic numerical interior solutions.Comment: 13 pages, 13 figures, LaTeX documen

    Evaluation of Brown Midrib Corn Silage for Growing and Backgrounding Beef Steers

    Get PDF
    A growing study evaluated three corn silage hybrids for growing crossbred steers. The three hybrids were: a standard corn silage hybrid which served as the control, a brown midrib hybrid, and an experimental brown mid rib hybrid with a softer endosperm. Intake, ADG, and ending BW were greater for steers fed either brown mid rib silage compared to control, but not different between the brown mid rib or experimental brown mid rib silage. While brown mid rib hybrids had greater DMI and ADG, there was no difference in F:G between all three treatments. Feeding brown mid rib hybrids as corn silage at 80% of the diet DM likely improved ruminal digestion, which allowed for greater DMI and ADG but without improving F:G

    Evaluation of Corn Silage Hybrids with the Brown Midrib Trait and Silage Inclusion for Finishing Cattle

    Get PDF
    A finishing study evaluated three corn silage hybrids fed at either 15 or 45% of diet DM for finishing steers. The three hybrids were a standard corn silage hybrid which served as the control, a brown midrib hybrid and an experimental brown midrib hybrid with a softer endosperm. An interaction was observed between hybrid and silage inclusion. Gain and HCW were greater for steers fed the experimental brown midrib compared to other two hybrids when fed at 15%. Feeding brown midrib hybrids at 45% of the diet DM resulted in greater ADG and HCW when compared to a control corn silage without the brown midrib trait. Feeding brown midrib varieties of corn silage at 45% of the diet DM improved feedlot performance and carcass characteristics compared to control corn silage

    Physics Behind Precision

    Full text link
    This document provides a writeup of contributions to the FCC-ee mini-workshop on "Physics behind precision" held at CERN, on 2-3 February 2016.Comment: https://indico.cern.ch/event/469561

    Structure of 12Be: intruder d-wave strength at N=8

    Get PDF
    The breaking of the N=8 shell-model magic number in the 12Be ground state has been determined to include significant occupancy of the intruder d-wave orbital. This is in marked contrast with all other N=8 isotones, both more and less exotic than 12Be. The occupancies of the 0 hbar omega neutron p1/2-orbital and the 1 hbar omega, neutron d5/2 intruder orbital were deduced from a measurement of neutron removal from a high-energy 12Be beam leading to bound and unbound states in 11Be.Comment: 5 pages, 2 figure

    Magnetized Accretion-Ejection Structures: 2.5D MHD simulations of continuous Ideal Jet launching from resistive accretion disks

    Full text link
    We present numerical magnetohydrodynamic (MHD) simulations of a magnetized accretion disk launching trans-Alfvenic jets. These simulations, performed in a 2.5 dimensional time-dependent polytropic resistive MHD framework, model a resistive accretion disk threaded by an initial vertical magnetic field. The resistivity is only important inside the disk, and is prescribed as eta = alpha_m V_AH exp(-2Z^2/H^2), where V_A stands for Alfven speed, H is the disk scale height and the coefficient alpha_m is smaller than unity. By performing the simulations over several tens of dynamical disk timescales, we show that the launching of a collimated outflow occurs self-consistently and the ejection of matter is continuous and quasi-stationary. These are the first ever simulations of resistive accretion disks launching non-transient ideal MHD jets. Roughly 15% of accreted mass is persistently ejected. This outflow is safely characterized as a jet since the flow becomes super-fastmagnetosonic, well-collimated and reaches a quasi-stationary state. We present a complete illustration and explanation of the `accretion-ejection' mechanism that leads to jet formation from a magnetized accretion disk. In particular, the magnetic torque inside the disk brakes the matter azimuthally and allows for accretion, while it is responsible for an effective magneto-centrifugal acceleration in the jet. As such, the magnetic field channels the disk angular momentum and powers the jet acceleration and collimation. The jet originates from the inner disk region where equipartition between thermal and magnetic forces is achieved. A hollow, super-fastmagnetosonic shell of dense material is the natural outcome of the inwards advection of a primordial field.Comment: ApJ (in press), 32 pages, Higher quality version available at http://www-laog.obs.ujf-grenoble.fr/~fcass
    corecore