72 research outputs found
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
Unfolding of differential energy spectra in the MAGIC experiment
The paper describes the different methods, used in the MAGIC experiment, to
unfold experimental energy distributions of cosmic ray particles (gamma-rays).
Questions and problems related to the unfolding are discussed. Various
procedures are proposed which can help to make the unfolding robust and
reliable. The different methods and procedures are implemented in the MAGIC
software and are used in most of the analyses.Comment: Submitted to NIM
Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope
We report the detection of a new source of very high energy (VHE, E_gamma >=
100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC
J0616+225, which is spatially coincident with SNR IC443. The observations were
carried out with the MAGIC telescope in the periods December 2005 - January
2006 and December 2006 - January 2007. Here we present results from this
source, leading to a VHE gamma-ray signal with a statistical significance of
5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux
consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/-
0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly
discuss the observational technique used and the procedure implemented for the
data analysis. The results are put in the perspective of the multiwavelength
emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter
Systematic search for VHE gamma-ray emission from X-ray bright high-frequency BL Lac objects
All but three (M87, BL Lac and 3C 279) extragalactic sources detected so far
at very high energy (VHE) gamma-rays belong to the class of high-frequency
peaked BL Lac (HBL) objects. This suggested to us a systematic scan of
candidate sources with the MAGIC telescope, based on the compilation of X-ray
blazars by Donato et al. (2001). The observations took place from December 2004
to March 2006 and cover sources on the northern sky visible under small zenith
distances zd < 30 degrees at culmination. The sensitivity of the search was
planned for detecting X-ray bright F(1 keV) > 2 uJy) sources emitting at least
the same energy flux at 200 GeV as at 1 keV. In order to avoid strong gamma-ray
attenuation close to the energy threshold, the redshift of the sources was
constrained to values z<0.3. Of the fourteen sources observed, 1ES 1218+304 and
1ES 2344+514 have been detected in addition to the known bright TeV blazars Mrk
421 and Mrk 501. A marginal excess of 3.5 sigma from the position of 1ES
1011+496 was observed and has been confirmed as a source of VHE gamma-rays by a
second MAGIC observation triggered by a high optical state (Albert et al.
2007). For the remaining sources, we present here the 99% confidence level
upper limits on the integral flux above ~200 GeV. We characterize the sample of
HBLs (including all HBLs detected at VHE so far) by looking for correlations
between their multi-frequency spectral indices determined from simultaneous
optical, archival X-ray, and radio luminosities, finding that the VHE emitting
HBLs do not seem to constitute a unique subclass. The absorption corrected
gamma-ray luminosities at 200 GeV of the HBLs are generally not higher than
their X-ray luminosities at 1 keV.Comment: 15 pages, 7 figures, 5 tables, submitted to ApJ (revised version
Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope
We report on very high energy gamma-observations with the MAGIC Telescope of
the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain
the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed
gamma-ray emission to be exponentially cut off. The upper limit on the flux of
pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and
the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11
photons cm^-2 sec^-1. We discuss our results in the framework of recent model
predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio
Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC
The paper describes an application of the tree classification method Random
Forest (RF), as used in the analysis of data from the ground-based gamma
telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to
be discriminated against a dominating background of hadronic cosmic-ray
particles. We describe the application of RF for this gamma/hadron separation.
The RF method often shows superior performance in comparison with traditional
semi-empirical techniques. Critical issues of the method and its implementation
are discussed. An application of the RF method for estimation of a continuous
parameter from related variables, rather than discrete classes, is also
discussed.Comment: 16 pages, 8 figure
MAGIC upper limits on the very high energy emission from GRBs
The fast repositioning system of the MAGIC Telescope has allowed during its
first data cycle, between 2005 and the beginning of year 2006, observing nine
different GRBs as possible sources of very high energy gammas. These
observations were triggered by alerts from Swift, HETE-II, and Integral; they
started as fast as possible after the alerts and lasted for several minutes,
with an energy threshold varying between 80 and 200 GeV, depending upon the
zenith angle of the burst. No evidence for gamma signals was found, and upper
limits for the flux were derived for all events, using the standard analysis
chain of MAGIC. For the bursts with measured redshift, the upper limits are
compatible with a power law extrapolation, when the intrinsic fluxes are
evaluated taking into account the attenuation due to the scattering in the
Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to
"MAGIC upped limits on the VERY high energy emission from GRBs", re-organized
chapter with description of observation, removed non necessaries figures,
added plot of effective area depending on zenith angle, added an appendix
explaining the upper limit calculation, added some reference
Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco
The nearby dwarf spheroidal galaxy Draco with its high mass to light ratio is
one of the most auspicious targets for indirect dark matter searches.
Annihilation of hypothetical DM particles can result in high-energy gamma-rays,
e.g. from neutralino annihilation in the supersymmetric framework. With the
MAGIC telescope a search for a possible DM signal originating from Draco was
performed during 2007. The analysis of the data results in a flux upper limit
of 1.1x10^-11 photons cm^-2 sec^-1 for photon energies above 140 GeV, assuming
a point like source. Furthermore, a comparison with predictions from
supersymmetric models is given. While our results do not constrain the mSUGRA
phase parameter space, a very high flux enhancement can be ruled out.Comment: Accepted for publication by Astrophysical Journa
Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212
We report on the discovery of Very High Energy (VHE) gamma-ray emission from
the BL Lacertae object 1ES1011+496. The observation was triggered by an optical
outburst in March 2007 and the source was observed with the MAGIC telescope
from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma
with an integrated flux above 200 GeV of (1.58 photons
cm s. The VHE gamma-ray flux is >40% higher than in March-April
2006 (reported elsewhere), indicating that the VHE emission state may be
related to the optical emission state. We have also determined the redshift of
1ES1011+496 based on an optical spectrum that reveals the absorption lines of
the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant
source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
First bounds on the high-energy emission from isolated Wolf-Rayet binary systems
High-energy gamma-ray emission is theoretically expected to arise in tight
binary star systems (with high mass loss and high velocity winds), although the
evidence of this relationship has proven to be elusive so far. Here we present
the first bounds on this putative emission from isolated Wolf-Rayet (WR) star
binaries, WR 147 and WR 146, obtained from observations with the MAGIC
telescope.Comment: (Authors are the MAGIC Collaboration.) Manuscript in press at The
Astrophysical Journal Letter
- …