20 research outputs found
An assessment of population structure in eight breeds of cattle using a whole genome SNP panel
<p>Abstract</p> <p>Background</p> <p>Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from <it>Bos indicus </it>and <it>Bos taurus</it>.</p> <p>Results</p> <p>Two thousand six hundred and forty one single nucleotide polymorphisms (SNPs) spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds.</p> <p>Conclusion</p> <p>The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the <it>Bos taurus </it>and <it>Bos indicus </it>breeds. When the <it>Bos indicus </it>breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the <it>Bos taurus </it>breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.</p
Whole genome linkage disequilibrium maps in cattle
<p>Abstract</p> <p>Background</p> <p>Bovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.</p> <p>Results</p> <p>Linkage disequilibrium was assessed using r<sup>2 </sup>among all pairs of syntenic markers within eight breeds of cattle from the <it>Bos taurus </it>and <it>Bos indicus </it>subspecies. <it>Bos taurus </it>breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while <it>Bos indicus </it>breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r<sup>2 </sup>values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle.</p> <p>Conclusion</p> <p>Linkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.</p
A Validated Genome Wide Association Study to Breed Cattle Adapted to an Environment Altered by Climate Change
Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide association study to detect DNA markers (single nucleotide polymorphisms) associated with the sensitivity of milk production to environmental conditions. To do this we combined historical milk production and weather records with dense marker genotypes on dairy sires with many daughters milking across a wide range of production environments in Australia. Markers associated with sensitivity of milk production to feeding level and sensitivity of milk production to temperature humidity index on chromosome nine and twenty nine respectively were validated in two independent populations, one a different breed of cattle. As the extent of linkage disequilibrium across cattle breeds is limited, the underlying causative mutations have been mapped to a small genomic interval containing two promising candidate genes. The validated marker panels we have reported here will aid selection for high milk production under anticipated climate change scenarios, for example selection of sires whose daughters will be most productive at low levels of feeding
Genomic characteristics of cattle copy number variations
<p>Abstract</p> <p>Background</p> <p>Copy number variation (CNV) represents another important source of genetic variation complementary to single nucleotide polymorphism (SNP). High-density SNP array data have been routinely used to detect human CNVs, many of which have significant functional effects on gene expression and human diseases. In the dairy industry, a large quantity of SNP genotyping results are becoming available and can be used for CNV discovery to understand and accelerate genetic improvement for complex traits.</p> <p>Results</p> <p>We performed a systematic analysis of CNV using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the pedigree information, we identified 682 candidate CNV regions, which represent 139.8 megabases (~4.60%) of the genome. Selected CNVs were further experimentally validated and we found that copy number "gain" CNVs were predominantly clustered in tandem rather than existing as interspersed duplications. Many CNV regions (~56%) overlap with cattle genes (1,263), which are significantly enriched for immunity, lactation, reproduction and rumination. The overlap of this new dataset and other published CNV studies was less than 40%; however, our discovery of large, high frequency (> 5% of animals surveyed) CNV regions showed 90% agreement with other studies. These results highlight the differences and commonalities between technical platforms.</p> <p>Conclusions</p> <p>We present a comprehensive genomic analysis of cattle CNVs derived from SNP data which will be a valuable genomic variation resource. Combined with SNP detection assays, gene-containing CNV regions may help identify genes undergoing artificial selection in domesticated animals.</p
Characterization of 954 bovine full-CDS cDNA sequences
Background: Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism\u27s genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing.
Results: The predicted bovine protein lengths, 5\u27 UTR lengths, and Kozak consensus sequences from 954 bovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts.
Conclusion: In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species
Location of dairy farms for which milk production data was retrieved and location of weather stations providing climate data.
<p>A. Location of dairy farms and B. Location of weather stations (green pins) supplying data in 2008 to the Australian Bureau of Meteorology (<a href="http://www.bom.gov.au/silo" target="_blank">http://www.bom.gov.au/silo</a>) that were in turn used by the Queensland Department of Environment and Resource Management DataDrill project (<a href="http://www.longpaddock.qld.gov.au/silo" target="_blank">http://www.longpaddock.qld.gov.au/silo</a>) in interpolating meteorological data onto a 5-×5-km grid across Australia. Image created with using <a href="http://www.microsoft.com/maps/isdk/ajax/" target="_blank">http://www.microsoft.com/maps/isdk/ajax/</a> .</p
SNPs for HTDMY<sub>slope</sub> and THI<sub>slope</sub> validated in the Jersey data set and their effects in the discovery and validation data set.
<p>The effects are the result of inheriting one extra copy of the second allele of the SNP (alleles in alphabetical order and called in top-bottom format). The F-value thresholds were 10.84 (P<0.001) for discovery and 3.85 (P<0.05) for validation. Blank cells indicate non-significance.</p>*<p>Note that the ARS prefix in front of BFGL in the marker names has been removed for clarity.</p
Position of significant SNPs in the discovery and validation data sets on chromosome 9.
<p>The position of the putative glycerol-3-phosphate dehydrogenase 1-like gene is indicated.</p