349 research outputs found
Forest floor leachate biogeochemistry and decomposition dynamics
Forest floor biogeochemistry was studied in combined field and modeling research in ecosystems representative of forests of the Northeastern U.S. The field study, conducted at the Harvard Forest, MA, focused on changes to organic and inorganic chemistry of forest-floor leachate under experimentally elevated N inputs meant to simulate effects of acid deposition in the region.
Concentrations of dissolved organic carbon and nitrogen (DOC and DON) increased substantially in N treatments in the first year of the study. I attributed this to an increase in production of soluble organics in the forest floor due to an interaction between increased N availability and lysimeter-installation disturbance. In the second year of the study, DOC and DON appeared unaffected by N amendments in a red pine stand that is exhibiting symptoms of N saturation. Concentrations of soluble organic C and N decreased with N amendment in a northern hardwood stand which is retaining all of the added N. I attributed this effect to a decrease in the solubility of humic substances.
Both stands exhibited pH decreases attendant with preferential retention of NH\sb4\sp{+} over NO\sb3\sp{-} in the O horizon. Base cations in the O horizon appeared to buffer solution pH changes better in the pine stand than in the hardwood stand.
Site-level data from previous studies were used to construct a process model of forest-floor decomposition and N dynamics. After validation through blind predictions, the model was used to simulate forest-floor mass and N capital during recovery from clear-cutting in northern hardwood forests. The model was also applied in 10-ha patches across a heterogeneous landscape to predict patterns of forest floor mass and N capital in the White Mountain National Forest
Plant Size and Competitive Dynamics along Nutrient Gradients
Resource competition theory in plants has focused largely on resource acquisition traits that are independent of size, such as traits of individual leaves or roots or proportional allocation to different functions. However, plants also differ in maximum potential size, which could outweigh differences in module-level traits. We used a community ecosystem model called mondrian to investigate whether larger size inevitably increases competitive ability and how size interacts with nitrogen supply. Contrary to the conventional wisdom that bigger is better, we found that invader success and competitive ability are unimodal functions of maximum potential size, such that plants that are too large (or too small) are disproportionately suppressed by competition. Optimal size increases with nitrogen supply, even when plants compete for nitrogen only in a size-symmetric manner, although adding size-asymmetric competition for light does substantially increase the advantage of larger size at high nitrogen. These complex interactions of plant size and nitrogen supply lead to strong nonlinearities such that small differences in nitrogen can result in large differences in plant invasion success and the influence of competition along productivity gradients
Effectiveness of cattail (Typha spp.) management techniques depends on exogenous nitrogen inputs
Wetlands occupy a position in the landscape that makes them vulnerable to the effects of current land use and the legacies of past land use. Many wetlands in agricultural regions like the North American Midwest are strongly affected by elevated nutrient inputs as well as high rates of invasion by the hybrid cattail Typha × glauca. These two stressors also exacerbate each other: increased nutrients increase invasion success, and invasions increase nutrient retention and nutrient loads in the wetland. This interaction could create a positive feedback that would inhibit efforts to manage and control invasions, but little is known about the effects of past or present nutrient inputs on wetland invasive plant management. We augmented a previously-published community-ecosystem model (MONDRIAN) to simulate the most common invasive plant management tools: burning, mowing, and herbicide application. We then simulated different management strategies and 3 different durations in low and high nutrient input conditions, and found that the most effective management strategy and duration depends strongly on the amount of nutrients entering the wetland. In high-nutrient wetlands where invasions were most successful, a combination of herbicide and fire was most effective at reducing invasion. However, in low-nutrient wetlands this approach did little to reduce invasion. A longer treatment duration (6 years) was generally better than a 1-year treatment in high-nutrient wetlands, but was generally worse than the 1-year treatment in low-nutrient wetlands. At the ecosystem level, we found that management effects were relatively modest: there was little effect of management on ecosystem C storage, and while some management strategies decreased wetland nitrogen retention, this effect was transient and disappeared shortly after management ceased. Our results suggest that considering nutrient inputs in invaded wetlands can inform and improve management, and reducing nutrient inputs is an important component of an effective management strateg
Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale
We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term Intersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these models changed over short to long time periods. Six genera of foliar and three genera of root litters were studied with a 10-fold range in the ratio of acid unhydrolyzable fraction (AUF, or ‘lignin’) to N. Litter was incubated at 27 field sites across numerous terrestrial biomes including arctic and alpine tundra, temperate and tropical forests, grasslands and warm deserts. We used three separate mathematical models of first-order (exponential) decomposition, emphasizing either the first year or the entire decade. One model included the proportion of relatively stable material as an asymptote. For short-term (first-year) decomposition, nonlinear regressions of exponential or power function form were obtained with r 2 values of 0.82 and 0.64 for foliar and fine-root litter, respectively, across all biomes included. AUF and AUF : N ratio were the most explanative litter quality variables, while the combined temperature-moisture terms AET (actual evapotranspiration) and CDI (climatic decomposition index) were best for climatic effects. Regressions contained some systematic bias for grasslands and arctic and boreal sites, but not for humid tropical forests or temperate deciduous and coniferous forests. The ability of the regression approach to fit climate-driven decomposition models of the 10-year field results was dramatically reduced from the ability to capture drivers of short-term decomposition. Future work will require conceptual and methodological improvements to investigate processes controlling decadal-scale litter decomposition, including the formation of a relatively stable fraction and its subsequent decomposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78615/1/j.1365-2486.2009.02086.x.pd
Endemic invasive amoebiasis in northern Australia
In October 2000, a 10-year-old Aboriginal boy from the Darwin region of the Northern Territory was referred to hospital with a 24-hour history of abdominal pain, initially generalised, but then localising to the right iliac fossa. The pain was accompanied by occasional vomiting, but no fever or diarrhoea was noted. At laparotomy, a gangrenous, unruptured appendix was removed. Postoperatively, the patient made a good recovery. Neither he nor any family members had travelled outside the Northern Territory.Histological sections of the surgical specimen showed changes typical of acute suppurative appendicitis. Closer examination, however, revealed numerous round-to-oval structures resembling trophozoites (see Box). When the possibility of invasive amoebiasis was raised, staining of the section with Entamoeba histolytica-specific sera confirmed the diagnosis. E. histolytica serology was negative
Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands
Gaining a better understanding of carbon (C) dynamics across the terrestrial and aquatic landscapes has become a major research initiative in ecosystem ecology. Wetlands store a large portion of the global soil C, but are also highly dynamic ecosystems in terms of hydrology and N cycling, and are one of the most invaded habitats worldwide. The interactions between these factors are likely to determine wetland C cycling, and specifically C accretion rates. We investigated these interactions using MONDRIAN, an individual-based model simulating plant growth and competition and linking these processes to N and C cycling. We simulated the effects of different levels of (1) N loading, (2) hydroperiod, and (3) plant community (natives only vs. invasion scenarios) and their interactions on C accretion outcomes in freshwater coastal wetlands of the Great Lakes region of North America. Results showed that N loading contributed to substantial rates of C accretion by increasing NPP (net primary productivity). By mediating anaerobic conditions and slowing decomposition, hydroperiod also exerted considerable control on C accretion. Invasion success occurred with higher N loading and contributed to higher NPP, while also interacting with hydroperiod via ecosystem-internal N cycling. Invasion success by both Typha × glauca and Phragmites australis showed a strong nonlinear relationship with N loading in which an invasion threshold occurred at moderate N inputs. This threshold was in turn influenced by duration of flooding, which reduced invasion success for P. australis but not for T. × glauca. The greatest simulated C accretion rates occurred in wetlands invaded by P. australis at the highest N loading in constant anaerobic conditions. These model results suggest that while plant invasion may increase C storage in freshwater coastal wetlands, increased plant productivity (both native and invasive) due to increased N loading is the main driver of increased C accretion
Multi‐scale heterogeneity in vegetation and soil carbon in exurban residential land of southeastern Michigan, USA
Exurban residential land (one housing unit per 0.2–16.2 ha) is growing in importance as a human‐dominated land use. Carbon storage in the soils and vegetation of exurban land is poorly known, as are the effects on C storage of choices made by developers and residents. We studied C storage in exurban yards in southeastern Michigan, USA, across a range of parcel sizes and different types of neighborhoods. We divided each residential parcel into ecological zones (EZ) characterized by vegetation, soil, and human behavior such as mowing, irrigation, and raking. We found a heterogeneous mixture of trees and shrubs, turfgrasses, mulched gardens, old‐field vegetation, and impervious surfaces. The most extensive zone type was turfgrass with sparse woody vegetation (mean 26% of parcel area), followed by dense woody vegetation (mean 21% of parcel area). Areas of turfgrass with sparse woody vegetation had trees in larger size classes (> 50 cm dbh) than did areas of dense woody vegetation. Using aerial photointerpretation, we scaled up C storage to neighborhoods. Varying C storage by neighborhood type resulted from differences in impervious area (8–26% of parcel area) and area of dense woody vegetation (11–28%). Averaged and multiplied across areas in differing neighborhood types, exurban residential land contained 5240 ± 865 g C/m2 in vegetation, highly sensitive to large trees, and 13 800 ± 1290 g C/m2 in soils (based on a combined sampling and modeling approach). These contents are greater than for agricultural land in the region, but lower than for mature forest stands. Compared with mature forests, exurban land contained more shrubs and less downed woody debris and it had similar tree size‐class distributions up to 40 cm dbh but far fewer trees in larger size classes. If the trees continue to grow, exurban residential land could sequester additional C for decades. Patterns and processes of C storage in exurban residential land were driven by land management practices that affect soil and vegetation, reflecting the choices of designers, developers, and residents. This study provides an example of human‐mediated C storage in a coupled human–natural system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122437/1/eap1313.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/122437/2/eap1313_am.pd
Analisis Kekuatan Massa Batugamping Dengan Menggunakan Kaidah Hoek-Brown Failure Criterion-Roclab Di Daerah Gunung Sudo Kabupaten Gunung Kidul YOGYAKARTA
The research area is a limestone quarry region prospect, located in Gunung Sudo, Gunung Kidul Regency, Special Region of Yogyakarta Province. Safety factor of bench in limestone quarry is extremely determined by rock mass quality. The aim of this research is analyzing of rock mass strength of limestone in the quarry prospect using the Hoek-Brown failure criterion. The research used quantitative method. To obtain rock mass strength analysis of limestone needs some parameters. The main parameters are uniaxial compressive strength of intact rock, GSI, lithology, disturbance factor, unit weight and application for slope (height).To solve this analysis is assisted by Roclab software. The Roclab is a software program for determining rock mass strength parameters based on the generalized Hoek-Brown failure criterion. Final result of the research will be used for safely mine design of the limestone quarry
- …