2,748 research outputs found
Alien Registration- Currie, John T. (Wade, Aroostook County)
https://digitalmaine.com/alien_docs/32681/thumbnail.jp
Trimethoprim+Sulfamethoxazole Reduces Rates of Melioidosis in High-Risk Hemodialysis Patients
Introduction
Melioidosis causes sepsis and death in the Top End of Northern Australia during the monsoonal wet season. Dialysis-dependent adults suffer higher melioidosis rates compared to low rates among renal transplant patients who routinely receive trimethoprim+sulfamethoxazole prophylaxis.
Methods
We performed a prospective interventional study to determine the efficacy and safety of daily trimethoprim+sulfamethoxazole prophylaxis in hemodialysis patients during the wet season, from 1 November 2014 to 30 April 2015. Hemodialysis (for ≥ 3 months) patients ≥ 18 years of age were offered treatment. A total of 269 patients on hemodialysis were eligible. Eight of the 269 patients (3%) were excluded from the analysis for being on melioidosis treatment. In all, 169 of 261 patients (64.8%) received the prophylaxis, and 92 of 261 patients (35.2%) did not, because of allergy history (n = 10), remoteness and logistical reasons (n = 60), poor dialysis attendance (n = 11), and refusal (n = 11). We monitored for clinical side effects 3 times weekly and neutropenia, thrombocytopenia, and liver function monthly throughout treatment and for 2 months posttreatment.
Results
In all, 169 of 261 patients (64.8%) received the prophylaxis. There was no age (years) difference by group (prophylaxis vs. nonprophylaxis, 54.7 [11.3] vs. 54.3 [11.2] [P = 0.751]). Sixteen of 261 patients (6%) had melioidosis. The event frequency was 0% (0/169, prophylaxis, vs. 17.4% [16/92, nonprophylaxis], P < 0.001). Higher thrombocytopenia and neutropenia rates were noted in the prophylaxis group. These did not warrant treatment stoppage. There was no difference in liver function. Three patients (1.8%) withdrew from the treatment because of side effects.
Conclusion
Daily dosing was effective and safe. Posthemodialysis dosing in the subsequent seasons was effective and safer. We recommend this approach in melioidosis-prevalent regions
Using BOX-PCR to exclude a clonal outbreak of melioidosis
Background
Although melioidosis in endemic regions is usually caused by a diverse range of Burkholderia pseudomallei strains, clonal outbreaks from contaminated potable water have been described. Furthermore B. pseudomallei is classified as a CDC Group B bioterrorism agent. Ribotyping, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) have been used to identify genetically related B. pseudomallei isolates, but they are time consuming and technically challenging for many laboratories.
Methods
We have adapted repetitive sequence typing using a BOX A1R primer for typing B. pseudomallei and compared BOX-PCR fingerprinting results on a wide range of well-characterized B. pseudomallei isolates with MLST and PFGE performed on the same isolates.
Results
BOX-PCR typing compared favourably with MLST and PFGE performed on the same isolates, both discriminating between the majority of multilocus sequence types and showing relatedness between epidemiologically linked isolates from various outbreak clusters.
Conclusion
Our results suggest that BOX-PCR can be used to exclude a clonal outbreak of melioidosis within 10 hours of receiving the bacterial strains
Early respiratory viral infections in infants with cystic fibrosis
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background
Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood.
Methods
Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life.
Results
Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances.
Conclusions
Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
Cross-National Measurement Invariance of the Teacher and Classmate Support Scale
The cross-national measurement invariance of the teacher and classmate support scale was assessed in a study of 23202 Grade 8 and 10 students from Austria, Canada, England, Lithuania, Norway, Poland, and Slovenia, participating in the Health Behaviour in School-aged Children (HBSC) 2001/2002 study. A multi-group means and covariance analysis supported configural and metric invariance across countries, but not full scalar equivalence. The composite reliability was adequate and highly consistent across countries. In all seven countries, teacher support showed stronger associations with school satisfaction than did classmate support, with the results being highly consistent across countries. The results indicate that the teacher and classmate support scale may be used in cross-cultural studies that focus on relationships between teacher and classmate support and other constructs. However, the lack of scalar equivalence indicates that direct comparison of the levels support across countries might not be warranted
A behaviorally related developmental switch in nitrergic modulation of locomotor rhythmogenesis in larval Xenopus tadpoles
Supported by PICS (Projet International de Coopération Scientifique) of the French CNRS and a LabEx BRAIN Visiting Professorship to KTS. SPC was a BBSRC research student. NWS was an MPhil student supported in part by the E & RS Research Fund of the University of St Andrews.Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming.Publisher PDFPeer reviewe
- …